

GRI
FLOATING POINT
INTERPRETIVE LANGUAGE

MANUAL

GRI Computer Corporation, 320 Needham Street, Newton, Massachusetts 02164
July 1972 by GRI Computer Corporation

Issued: July 1972
Supercedes: Jan. 1972

74-44-001C
0200 0872

FLOATING POINT MANUAL

TABLE OF CONTENTS 74-44-001-C
1 FLOATING POINT INTERPRETER
1.1 ‘Introduction . . v v v 0 i b i e it e e e e e e e e e e o 11
1.2 Basic Package, $SFI . . ¢ ¢« v v ¢ o ¢ « & & ; B D
1.3 Floating Point Format l: e £
1.4 Internal Registers ; B R Y
2 BASIC COMMANDS
2.1 - Command Categories . . . ¢ ¢ ¢ ¢« v ¢ v 4 o o s o o o o & » 2-1
2.2 Command Descriptions . .+ v v v v ¢ ¢ ¢ ¢ ¢ o o o o o o o o 2=2
| 2.2.1 Type 1 Commands‘— Load & Store Commands . . + + « & & «. . 2-2
2.2.,2 Type II Commands - Binary Commands‘. . 2-3
2.2.3 Type III Commands - Unary CommandS .+ + « o v + o 4 o o\ . 2-7
2.2.4 Type IV.Commands - Index Coﬁmands .‘. . . .-; e s e s . . 2-8
2.2.5 Type V Commands - Conditionals « « v v & « o « . 2-8
2.2.6 Type VI Command - Exit e e e e e e e .. 2-11
3 © DATA CONVERSION
3.1 Introduction « « v v v v v v v v 4w e e e e e e e e e .. 31
3.2 Floating Point to Character Conversion + « « o . . 3-2
3.3 Character to Floating.Poiﬁt; .
3.4 Common Tables & Routines . . « & o & v ¢ 4 ¢ o ¢« o o 0 o o« 3=7
3.5 Character Set Table ¢« & v ¢ ¢« o & & . ;'. « « « . 3-8
3.6 Floating Point Powers of Ten Table . + « « « v o « + . . . 3-9
3.7 Left Shift FAC ¢ ¢ ¢ v v ¢ v v v v 4 s o v « « « . 310
3.8 Multiply FAC by Ten . & & & & v o ¢ o o « o o o o « « « « 311
4 EXTENDED COMMANDS
4.1 Introduction . « ¢« v v & v ¢ v 4ttt e e e e e e e e e . 4]

4.2 Sine, Cosine . . & & ¢ ¢ 4 ¢« ¢ 4 4 6o 4 o o 4 e e s 0 4 . . b=3

4.3
4.4
4.5

4.6

5.1

5.2

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9

5.3

6.1

6.2

Appendix A

Appendix B

Arc Tangent .« « ¢ ¢« v ¢ v 4 4 4 4 4 e e 4. .
Natural Log . « v v ¢ 4 ¢ ¢ ¢ o o o o o s o &
Exponential . ¢+ & ¢ v ¢ v v 4 v e e v e 4 e
Square ROOt « « v v v & 4 4 4 ¢ ¢ v 4 o 0 .
NON-INTERPRETIVE MODE USAGE

Introduction .« « o ¢ v v 4 4 4 e . 4w . . .
Subroutines 4 4 4 v e e e 4. .
Double Precision Fixed Point Add
Double Precision Fixed Point Multiply
Double Precision Fixed Point Divide
Single Precision Divide
Floating Point Normalize
Negation and Store « ¢« « v v v . . .
Generate Zero or Largest Number
Floating Arithmetic Right Shift
Other Notes on Non-Interpretive Usagé o« e e
User Generated Extended Functions
OPERATING INSTRUCTIONS AND SYSTEM GENERATION
Using the Package as Supplied ¢« e e e e o .

User Generated Svstems . . ¢ « ¢ ¢ o o o o .

CONVERSION FOR MODEL 40 FLOATING POiNT
APPENDICES
Command Summary — Basic

Commented Command Equate Tape + . . .

FLOATING POINT MANUAL
74-44-001-C

e+« « « . 5-10
. e B
e+« « o o 5-12

. e V]

Appendix
Appendix
Appendix
Appendix

Appendix

c

D

E

F

G

Command Table ($SFIC)

4#FCG - Floating Point Constant Generator

FPSET - Error Trap Routine . . .

Trace Routine

System Storage Requirements

\

FLOATING POINT MANUAL
74-44-001-C

1-1 FLOATING POINT MANUAL

74-44-001-C
CHAPTER ONE

FLOATING POINT INTERPRETER

1.1 Introduction:

The GRI Floating Point Intrepreter is a complete system that allows the
user to process data in floating point arithmetic. Floating point arithmetic,
through the e of multiple precision érithmetic and an exponential concépt
greatly extends the range of precision available to the user beyond that of
fixed point arithmetic. It also, through utility routines, frees the user
of the bookkeeping involved with scaling and unscaling of numbers that is

necessary in a fixed point system.

GRI computers have an instruction set which is known as machine language.
The computer reads instruction worés out of its memory and hardware is ac-
tivated by the interpretation of each instruction word to cause the execution
of that instruction. An interpretive software system fetches instructions
which we shall call commands from the computer's memory and causes various
subroutines to be entered as a result of the interpretation of the command.
These commands fetched by the interpreter are also called psuedo-instructions
because their format deviates from the machine's instruction format. The

standard machine format instruction is

WORD 1 SDA MOD DDA

WORD 2 [ADDRESS] (if a memory reference in-
struction)

A pseudo-instruction or command such as the ones used in the GRI Floating

Point Interpréter looks like this:

WORD 1 OP CODE

WORD 2 [ADDRESS] (if a memory reference pseudo-instruction)

The interpreter actually simulates the process used by the computer's

hardware to execute an instruction. The interpreter fetches the OP CODE words

1-2
FLOATING POINT MANUAL
74-44-001-C

and addresses, sets up arguments, flags, and performs a function on the ar-

gument (s) as specified by the OP CODE of the pseudo-instruction.

An interpretive approach to floating point arithmetic provides the user
with a functionally oriented language that mékes usage of floating point
arithmetic much easier than if it were done through a series of subroutines
called in machine language. The user references floating point numbers
with a single address which is the first address of the two word floating
point number. The interpreter takes care of the address bookkeeping neces-
sary for two word argument handling. The interpreter also maintains a set.
of accumulators much the same as an arithmetic unit. Arguments and fesults

are manipulated and left in these accumulators. The interpreter utilizes

two such accumulators plus an index register.

There are a set of commands in the interpretive system that are not
floating point arithmetic commands. These are program control commands such
as conditional jumps and index register manipulators. The index is simply
used to keep track of the number of times command loops are executed. These
commands, although they could be effected by use of basic machine language,
are also provided in the interpretive modg because they can save the user time
that would be spent entering and leaving the interpretive mode, and almost

always save space in terms of the coding needed.

When the user is ready to execute commands in his program, he first is-
sues a machine language command that causes a jump to the interpreter to take
place. The interpreter now assumes control and starts fetching commands which
follow the jump that caused interpretive mode entry. If the user wishes to
bégin executing machine language instructions, he must issue an interpretive

command that causes the interpreter to relinquish control. In essence, the

FLOATING POINT MANUAL
74-44-001-C

machine is running in two different modes; a machine language mode and a

psuedo-language mode -- in this case, a floating point language.

The GRI interpretive system offers a novel error trap feature which
may be invoked by the user to assist iﬁ'tracking down places in the program
where data values are causing error checks to occur. Errors such as dividing
by O, exceeding the capacity of the psuedo-accumulators in either the mantissa
or expoment portions, etc., can all be caused by an unknown data base. All
manipulations of data refer to manipulations in and out of the psuedo-accumulator
called FAC. This accumulator behaves like the accumulator in an adding machine.
It must be loaded to initialize it; stored to save it, and all arithmetic op-
erations leave their results in the accumulator. Commands with two operands
are called binary commands and operate on a data word in user memory and
the contents of FAC, replacing the result in FAC. Commands with one operand

are called unary commands and operate on FAC, leaving their results in FAC.

Let us consider a simple example:

Compute R = “Xz + Y2

JU $SFI senter floating mode

FLDA X ;fetch X to FAC

FMPY X ;X2 in FAC

FSTA T1 ;jstore FAC in temporary loc
FLDA Y sfetch Y to FAC

FMPY Y ;Y2 in FAC

FADD T1 ;X2 + Y2 in FAC

FSQT ; Nx2 + Y2 in FAC

FSTA R ;store result in R

FEXT ;exit from floating mode

1-4
FLOATING POINT MANUAL
74-44-001-C

1.2 Basic Package, $SFI:

Floating point arithmetic capabilities are provided through an inter-
pretive package. Associated with the package is an externale> internal for-
mat data conversion routine that can be easily tailored to the character set

being processed.

The interpretive package is invoked by a normal subroutine call. The
call is followed by a string of commands that are established by use of
equate statements during the assembly. The last command in the sequence
causes a return to the calling program. Operations are performed using a
pseudo accumulator maintained locally b§ the interpretive package. The
package also contains a 16 bit pseudo index to allow loops within the command
sequence. Without this feature, it would be necessary to exit and re-enter the
interpretive package and perform loop counts outside the interpreters Al-
though the latter procedure is, in most instances, faster in terms of time
taken to do the loop, it usually involves considerably more code and, there-

fore, takes more space.

As an example of a typical problem programmed in the interpreter

language, we evaluate the polynomial
- A2 3 x4
Y = Ag + AjX + ApXS + A3XC + A4
which can iteratively be expressed as Y = (((A4X+A3)X+A2)X+A1)X+AO

as follows:

LOOP:

CONST:

A4:

A3:

M4 :

JU

FLDX

FLDA

FMPY

FADDD

FJIX

FSTA

FEXT

$SFI
M4

A4

CONST

LOOP

0,0
A3-1

X1,X2

A41,AL2

A31,A32
A21,A22
A11,A12
AO1,A02

-4

FLOATING POINT MANUAL
74-44-001-C

;ENTER INTERPRETER

;LOAD PSEUDO INDEX WITH -4

;LOAD PSEUDO-ACCUMULATOR
sMULTIPLY IT BY X

;DEFERRED ADD A3 (THEN A2, Al, AO)
;COUNT THE LOOP

;STORE RESULT IN Y

;EXIT THE INTERPRETER

3STORAGE SPACE FOR ANSWER

sDEFERRED ADDRESS (GETS CHANGED)
;TWO'WORD FLOATING POINT VALUE OF X
sFLOATING A4 VALUE

3A3

sA2

sAO

;ONE WORD INDEX COUNT VALUE

FLOATING POINT MANUAL
74-44-001-C

1.3 Floating Point Format:

Internal representation of a floating point number occupies two successive
locations in memory and consists of a fixed point fraction (mantissa) with an
associated exponent. The mantissa is in two's complement notation with a
sign bit followed by 23 bits of significance. The binary point is assumed
to be immediately to the right of the sign. The exponent, which is the power
of two by which the mantissa is multiplied, has the range -200g to +1778
(27128 4 2t127y | This exponent is represented in "excess 200g" notation by
adding +2008 to the true exponent. This requires a total of 8 bits and the

range of the excess 200g notation is 000 to 377g, where 200g represents 20,

Thus, a floating point number looks like:

15 14° 0
Word 1 (16 bits) |s | Fraction - most significant
15 87 0,

Word 2 (16 bits) lEraction - least siggificantl Exggnengl

This format allows an accuracy of 6+ decimal digits and a range of 11.469368x10'39

to +1.701411x10™38,

To obtain correct results, all floating point operations (exgept FLDA,
FSTA and FNOR) require the floating point numbers being operated on to be
normalized; that is, bit 14 of word 1 must be tﬁe most significant bit of
the fraction (mantissa). The only exception to this requirement is a floating
point zero, which has no significant bits--a normalized floating point zero
is two words of all zero (mantissa = 0, excess 200g exponent = 0).
Note: The mantissa of a normalized floating point number other than zero

has an absolute value in the range 1/2£§|mantissa|(]”

1.4

Examples:

Decimal

1.0

1.25

-1.25

100.

-100.

Internal Registers:

- 1-7

FLOATING POINT MANUAL
74-44-001-C

Internal Floating Point (octal)

word 1
040000
050000
140000
130000

062000

116000

040000

040000

062207

062207

115570

word 2

000201

000201

000201

000201

000207

000207

066200
000177
166602
166601

011602

There are three pseudo-~registers contained in the interpreter i) the

pseudo-accumulator (FAC), ii) a temporary pseudo-accumulator (FTM), and

iii) the pseudo-index register (FINDX).

i) FAC - The floating pseudo-accumulator.

This consists of three

locations in the interpreter and is used to contain the left-hand argument

of a binary floating point command as well as the results of any fioating

point command. It is organized as follows:

FACHI - contains high order mantissa and sign of value in FAC

FACLO - contains low order mantissa of value in FAC

FACXP - contains excess 2000 exnonent of value in FAC

1-8
FLOATING POINT MANUAL
74-44-001-C

ii) FTM - temporary pseudo-accumulator. This consists of three lo-
cations analogous to FAC. They are named FTMHI, FTMLO, and FTMXP. The
temporary accumulator is used to hold an additional floating point value
for those commands which require two floatiné point values in order to op-

erate, e.g. a type Il (binary) command (see 2.2.2).

iii) FINDX - pseudo index. This consists of one location of the same

name and holds the current value of the index.

Note: FACHI, FACLO and FTMHI, FTMLO are treated as full 31 bit double
precision quantities for the basic arithmetic operations add, sub-

tract, multiply, and divide.

2.1 Command Categories:

FLOATING POINT MANUAL
74-44-001-C

CHAPTER TWO

BASTC COMMAMDS

The commands are of the following categories:

II

III

Iv

Vi

load & store

binary

commands

unary

commands -

index

commands

conditionals

exit

we

“e

" the command specifies the source or destina-

tion of floating point data - the corresponding
destination or source is the pseudo accumula-

tor.

the command specifies the source of the
rightmost operand - the floating accumulator
contains the leftmost operand. The result

will be in the accumulator.

the command merely specifies the function to
be performed on the accumulator. The result

will be in the accumulator.

the command specifies the source or destina-
tion of an index value - the corresponding

destination or source is the pseudo index.

the command specifies an address to which con-
trol passes if the test defined by the command
is true - the address must contain another
floating point command. Tests may be per-
formed on the floating accumulator,‘certain

flags, and the index.

this command causes a return to the calling

program.

2.2

2-2
FLOATING POINT MANUAL
74-44-001-C

The load & store (Type I) and binary (Type II) commands may
specify deferred (indirect and auto-indexed) addressing mode. Deferred
addressing in floating point commands operates exactly as in machine

language.

Command Descriptions:

2.2.1 TYPE I COMMANDS - LOAD & STORE COMMANDS

LOAD FLOATING ACCUMULATOR (AC)

mnemonic address code no. of words

FLDA X 01 ‘ 2

The contents of the location specified by X and X + 1 are treated as
a floating point number and are loaded into the floating point pseudo ac-
cumulator. The floating point number in locations X and X + 1 is split into
three parts i) X, which consists of the high order mantissa, goes into
FACHI; ii) bits 8-15 of X + 1, which consists of the low order mantissa,
goes into bits 8-15 of FACLO and bits 0-7 of FACLO are set to zero; and
iii) bits 0-7 of X + 1, which consists of the excess 2008 exponent, goes

into bits 0-7 of FACXP and bits 8-15 of FACXP is set to zero.

DEFERRED LOAD FLOATING AC

mnemonic address code no. of words

FLDAD A 101 2

The contents of location A is incremented by one, replaced in A, and
the result is used as the effective address X; then the contents of A are
incremented and replaced a second time forming the effective address X + 1.
The contents of X and X + 1 are then treated as a floating point number and

loaded into FAC as explained under FLDA.

2-3
FLOATING POINT MANUAL
74-44-001-C

STORE FLOATING AC

mnemonic address code no. of words

FSTA X 02 2

The contents of FAC are rounded into bit 8 of FACLO, bits 0-7 of FACLO
are set to zero. Then FACHI, FACLO, and FACXP are packed into a floating
point number and stored in X, and X + 1. Note that this'operation alters

FAC so that it agrees with the value stored in X, and X + 1.

It is also possible for the rounding operation to cause exponent over-
flow (excess 200g exponent exceeds.+3778). This can occur only if the
number being rounded is very close to the largest possible positive float-

ing point number. The value stored in this case will be X = 077777g,

X+ 1= 1777778, and FXFLG will bé set non-zero. A successful FSTA will set

FXFLG to zero.

DEFERRED STORE FLOATING AC

mnemonic address .~ code no. of words
FSTAD A . 102 2

The contents of A are incremented twice as explained under FLDAD, form-
ing effective addresses X and X + 1 into which FAC is stored as explained

under FSTA.

2.2.2 TYPE II COMMANDS - BINARY COMMANDS

All Type II commands depend on both FAC and the argument of the
command to have normalized mantissas. If unnormalized numbefs are
used, the results are unpredictable. A FNOR instruction (see 2.2.3) is
provided to normalize any quantity if it is necessary to do so. Also,

if all inputs are normalized, the results in FAC will be normalized as

FLOATING POINT MANUAL
74-44-001-C

will the value retrieved from FAC by use of an FSTA instruction.

Type II commands can cause exponent underflow or overflow if the
number created in FAC by the command has an excess 2008 exponent out-
side the range 0 to +377g respectively. The occurrence of either
condition is indicated by FXFLG being non-zero after the operation
has been completed. It may be tested by use of the FJEV command.

The successful completion of a Type II command will set FXFLG to zero.

FLOATING ADD

mnemonic address " code no. of words

FADD X 03 . 2

The floating point number in locations X and X + 1 are added to

the contents of FAC, and the result replaces FAC.

DEFERRED FLOATING ADD

mnemonic address code no. of words

FADDD A 103 2

The contents of A are incremented twice as explained under FLDAD,
forming effective addresses X and X + 1, the contents of which are
added to FAC, and the result replaées FAC.

FLOATING SUBTRACT

mnemonic address code no. of words

FSUB X 04 2

The floating point number in locations X and X + 1 are subtracted
from the contents of FAC, and the result replaces FAC.
DEFERRED FLOATING SUBTRACT

mnemonic address code no. of words

FSUBD A 104 2

2-5
FLOATING POINT MANUAL

74-44-001-C
Effective address is formed from A as in FADDD.
FLOATING MULTIPLY
mnemonic address code no. of words

FMPY X 05 2

FAC is multiplied by the floating point number in X and X + 1.
The result replaces FAC.

DEFERRED FLOATING MULTIPLY

mnemonic address code no. of words

FMPYD A - 105 2

Effective address is formed from A as in FADDD.

FLOATING DIVIDE

mnemonic address code no. of words
FDIV X 06 2

FAC is divided by the floating point number in X and X + 1. The
result replaces FAC. Divide check will occur if X, X + 1 is zero or
not normalized. This causes FAC to be set to the largest possible
floating point number of the sign which would be the result of the
divide if it could take place, aqd the divide check flag (FDFLG) will
be non-zero. A successful divide sets FDFLG to zero.

Note — if both FAC and‘X are 0, the result will be the largest
possible positive floating poiht number in FAC with FDFLG set non-zero.

DEFERRED FLOATING DIVIDE

mnemonic address code no. of words

FDIVD A 106 2

Effective address is formed from A as in FADDD.

2-6
FLOATING POINT MANUAL
74-44-001-C

FLOATING ADD MAGNITUDE

mnemonic address code no. of words

FADM X 07 2

The absolute magnitude of the floating point number in X and

X + 1 is added to FAC. The result replaces FAC.
DEFERRED FLOATING ADD MAGNITUDE

mnemonic address code no. of words

FADMD A 107 2
Effective address is formed from A as in FADDD.
FLOATING SUBTRACT MAGNITUDE

mnemonic address code no. of words

FSBM X 10 2

The absolute magnitude of the floating point number in X and

X + 1 is subtracted from FAC. The result replaces FAC.
DEFERRED FLOATING SUBTRACT MAGNITUDE

mnemonic address code no. of words .

FSBMD A 110 2

Deferred subtract magnitude. Effective address is formed from

A as in FADDD. -

FLOATING POINT MANUAL
74-44-001-C

2.2.3 TYPE III COMMANDS - UNARY COMMANDS

FLOATING ABSOLUTE VALUE

memonic address code no. of words
FABS none 14 1

N

i 1
The absolute value of the FAC replaces the FAC, i.e. IFAC i

replaces FAC.

FLOATING SQUARE

mnemonic address code no. of words
FASQ none 15 1

The square of FAC is returned in FAC. This instruction requires
that the mantissa of FAC be normalized prior to execution as in

type II instructions (see 2.2.2).

FLOATING NORMALIZE

mnemonic address code no. of words
FNOR none _ 16 1

The contents of FAC are normalized and replace FAC. This in-
struction can cause exponent overflow or underflow in which case FAC
will contain the largest possible negative floating point number or

all zeros respectively and FXFLG will be set non-zero. A successful

normalize will set FXFLG to zero,

FLOATING NEGATIVE VALUE

mnemonic address - code no. of words
FNEG none 17 1

The contents of FACHI and FACLO are twos complemented, i.e. -FAC

replaces FAC.

2-8
FLOATING POINT MANUAL

74-44-001-C
2.2.4 TYPE IV COMMANDS - INDEX COMMANDS ~
LOAD INDEX
mnemonic address code no. of words
FLDX I 27 2

The pseudo-index is loaded with the 16 bit contents of location I.

STORE INDEX

mnemonic address code no. of words

FSTX I 30 2

The 16 bit pseudo-index is stored into location I.

2.2.5 TYPE V COMMANDS - CONDITIONALS

These commands allow the program to alter the path of control which the
interpreter is following based on the results of certain tests. The lo-
cation to which the interpreter is caused to transfer must contain a valid
floating point command. If the interpreter shoﬁld encounter an invalid com-
mand at any time during execution, it will come to a halt with ;he address
of the illegal command displayed in the MB register on the front panél. This

is the only halt in the program.
JUMP UNCONDITIONAL

mnemonic address code no. of words

FIMP C 20 2

Unconditional jump. The interpreter will take the next command

from location C and continue from there.

2-9
FLOATING POINT MANUAL

74-44-001-C
JUMP IF AC POSITIVE
mnemonic address code no. of words
FJAP C 21 2

If FAC is positive or zero, the interpreter takes the next
command from location C. Otherwise, the interpreter continues with

the command following the FJAP command.

JUMP IF AC ZERO

mnemonic address code no. of words

FJAZ c 22 2

If FAC is 0, the interpreter will take the next command from
location C. Otherwise, the interpreter continues with the command
following the FJAZ command. Note: The interpreter tests only FACHI
for zero. FAC may be non-zero and FACHI = 0 only if the number in
FAC is not normalized. This condition cannot be created by the inter-
preter unless the user has intreduced unnormalize& numbers into his

calculations (see 2.2.2).

JUMP IF AC NEGATIVE

mnemonic address code no. of words
FJAN C 23 2

If FAC is negative, the interpreter will take the next command
from location C. Otherwise, the interpreter continues with the com-

mand following the FJAN command.

2-10
FLOATING POINT MANUAL
74-44-001-C

JUMP IF EXPONENT OVERFLOW (OR UNDERFLOW)

mnemonic address code no. of words

FJEV c 24 2

If FXFLG is non-zero, the interpreter will take the next command
from location C and set FXFLG to zero. Otherwise, the interpreter will
continue with the command following the FJEV command. The FJEV command
is used to detect the occurrence of either exponent overflow or exponent
underflow resulting from the execution of the last preceding Type II command
or FSTA, FNOR, or FASQ. If desired, the type of overflow may be detected
by an FJAZ command at location C, since exponent underflow returns FAC=0,
and exponent overflow returns the largest number (+ or -) in FAC.
JUMP IF DIVIDE CHECK

mnemonic address code no. of words

FJDC C 25 2

If FDFLG is non-zero, the interpreter will take the next command
from location C and set FDFLG to zero. Otherwise, the interpreter con-
tinues with the command following the FJDC command. The FJDC command is
used to detect the occurrence of divide check during execution of the last
previous FDIV or FDIVD command. If desired, one may test whether the con-
dition occurred because the divisor was 0 or not normalized by checking the
divisor with an FLDA and FJAZ instruction at location C.
JUMP IF INCREMENTED INDEX NOT ZERO

mnemonic address code no. of words

FJIX C 26 2

_The pseudo-index (FINDX) is incremented by one, and if the result is

non-zero, the interpreter takes the next command from location C.

2-11 FLOATING POINT MANUAL

74-44-001-C

If the result is 0, the interpreter continues with the command follow-
ing the FJIX instruction. The pseudo-index will contain the incremented

value whether or not the jump occurs.

2.2.6 TYPE VI COMMAND - EXIT .

EXIT FLOATING INTERPRETER

mnemonic address code no. of words
FEXT : none 0 1

This command causes the intefpreter to return control to the
user at the location immediately following the FEXT. None of the
internal registers or flags are altered by either the FEXT or entering

the package. The AO is returned in the ADD state.

3.1

FLOATING POINT MANUAL
74-44-001-C

CHAPTER THREE

DATA CONVERSION

Introduction:

Two conversion routines are provided; one to convert from floating point
to character, the other to convert from character to floating‘point. Both
conversion routines are core to core operations rather than’being bound to a
particular I/0 device (that is, characters are fetched from and stored into
memory). For addedrflexibility, all characters are referenced with én index
into a character set table called @FCST, which initially contains 8-bit
ASCII codes. Changing the character set for a specific I/0 device can easily

be accomplished by changing the character codes in @FCST.

External floating point format is expressed as a mantissa or fraction
portion and a power of ten by which the mantissa is multiplied. This is

written as +n.nnnnnn E +nn, where n is a decimal digit. The number to the

H(_J\.\,.J
mantissa exponent

right of the E is the power of ten by which the mantissa is multiplied. Thus,

-3.527614E+03 is -3.527614%103 or ~3527.614. The floating point number

+172.100123E-02 is +17_2.100123"‘-10"2 or +1.72100123,

3.2 Floating Point to Character Conversion:

- NAME:
SUBROUTINES CALLED:

ALTERED REGISTERS & FLAGS:

CALLING SEQUENCE:

ARGUMENTS :

FLOATING POINT MANUAL
74-44-001-C

@sFc

$SFI, @FXC

FAC, FTM, FXFLG, FDFLG

JU @SFC
WRD el-1
WRD e2
WRD e3

return

el is the address of the location into

which the first output character is

. to be stored.

FUNCTION:

e2 is the address of the two word float-
ing point argument. The argument need
not be normalized but the magnitude must
be zero or in the range (2'129, 2+128)
(in decimal this is 1.469367E-39 to
1.701411E+38)

e3 is the address of the error return.

Converts a éigned two word floating
point argument to a string of thirteen
characters, stored one character per
word, right justified starting in lo-
cation el. The character string is of

the format

: {}f} n.nnonnnn E(&}nn

where n is character representation of a

‘decimal digit.

ERRORS:

NOTE:

LENGTH:

Description of Algorithm:

FLOATING POINT MANUAL
74-44-001-C

If normalization of the floating point
argument caused either exponent over-
flow or underflow, an * is stored rather
than a leading + or - sign, and when
conversion is completed, control returns
to e3. The * can be considered a - sign.
An argument resulting in overfiow con-
verts to * 1.701411 E + 38. An argu-
ment resulting in underflow converts to
*0.000000 E + 00.

The magnitude of the three smallest nor-
malized non-zero floating point numbers
are converted to one of the character
strings +1.469367E-39 or +1.469368E-39.
These two character strings cannot be
converted back to a floating point number.
The smallest character string which can
successfully be converted to a floating
point number is +1.469369E-39, Therefore,

if the user converts any one of these

three numbers to a string of characters,
he should be aware that he cannat suc-
cessfully convert the string back to

a floating point number.

306g (198;() locations

The sign of the floating point argument is stored, the argument is then

normalized, and the absolute value is taken and used for conversion. If nor-

- malization caused either exponent overflow or underflow, the error return is

taken when conversion is completed and an asterisk (which may be considered

as a '-'), is stored rather than a leading sign.

FLOATING POINT MANUAL
74-44-001-C

%
Since the output character string is of the form{;}n.nnnnnnEipn, the

floating point argument is first manipulated to maké i; greater than or
equal to one and less than ten. (If the floating point argument is exactly
zero, this portion of the algorithm is bypassed.) Making lfgfloating
point argument €10 is accomplished by first checking if it 152 1. If it
is not, it is multiplied by the largest possible poﬁer of ten (1038) and,
if necessary, it is multiplied once again by ten to force iti!l. The ar-
gumenf is then checked for€ 10. If it is not& 10, it is forced so by
dividing by the largest power of ten, which is less than the argument. The
powers of ten used in multiplying and dividing the argument to force its

value to be between one and ten are used to form the exponent portion of

the character string.

With the floating point argument (stored in FAC) now21 and<10, the
mantissa portion of the character string can be formed. FACHI, FACLO is
treated as a double precision mixed number with FACXP showing the position
of the binary point. FACHI, FACLO is left shifted (with overflow bits shifted
into a 3rd word) until the binary point immediately precedes bit 15 of FACHI.
The overflow word is then converted to character and stored as the first digit
of the mantissa, immediately followed by a decimal point.‘ The.fraction'por-
tion of the mantissa is formed by successively multiplying FACHI, FACLO by
1016 and storing the most significant word of the 3 word product. The ex-

ponent is then converted and stored, preceded by an E and either a + or - sign.

FLOATING POINT MANUAL

74-44-001-C
3.3 Character to Floating Point:
NAME: @SCF
SUBROUTINES CALLED: $SFI, @FXC
ALTERED REGISTERS & FLAGS: . FAC, FIM, FXFLG, FDFLG
CALLING SEQUENCE: JU @SCF
WRD el-1
WRD e2
WRD e3
return
ARGUMENTS : ' Aél is the address of the first character

e

¥

(s

he string to be converted. The char-
acter string should be stored one charac-

ter _p_er”word__;ight justified in the format

+ »I"l [n...] . [n...] (E [_-t]} n[n] [A...] [}]
+
- e [P J

The notational conventions are:

-
L
/
\

1. n is a decimal digit

2. O is a space

"3.) is a delimiter

4. braces [] contain optional items
which may or may not be included.

5. brackets { }contain alternate items
where one and only one of the items
must be included.

6. ellipses ... denote permissible
repetition of the preceding item.

The string is treated as follows:

1. If there is no sign, it is treated as +.

FLOATING POINT MANUAL
74-44-001-C

2. If the leading sign is * or -, it
is treated as -.

3. If there is no decimal point, it is
assumed to follow the last mantissa
digit.

4, Characters are processed up to and
including the first) » or 139 char-

acters have been processed.

e2 is the address where the two word

floating point answer is stored.
e3 is the address of the error return.

FUNCTION: Converts a string of decimal characters
to a two word normalized floating point
answer. The two word normalized float-
ing point answer is returned in registers
AX (MSH), AY (LSH), and is stored in lo-
cation e2 (MSH) and e2+l1 (LSH). The AO

is returned in the ADD state.

ERRORS : A scan error occurs if the character
string is illegally formed. Location
@SCF+3 is set to zero and control im-

mediately returns to e3.

An overflow error occurs if the charac-

ter string contains more than 1013 man-
tissa digits (discounting leading zeros)

or if the magnitude of the number is out-
side the range 1.469369E-39 to 1.701411E+38.
Location @SCF+3 is set to one and control

immediately returns to e3.

Whenever control returns to e3, the AO

is in the ADD state.

FLOATING POINT MANUAL

74-44-001-C
NOTES : See NOTES under @SFC.
LENGTH: 4068 (26210) locations

Description of Algorithm

The mantissa portion of the character string is converted to a
double precision integer by multiplying the answer by 1099 and adding
in the latest digit. This double precision mantissa is then converted
to a normalized floating point number. A count of the number of digifs
to tHe right of the‘decimal point is kept and, after the exponent portion
of the character string has been converted, this digit count is'subtracted
from it to obtain the final exbonent. The magnifude of the final exponent
is used as an index into the pogitive floating point powers of ten table
(see 3.6). The floating point number obtained from the mantissa portion
of the character string is then multiplied (if ﬁhe final eéponent was
positive) or divided (if the final exponent was negati#e) by this power
of ten to form the final floating point answer. If there was a leading
minus sign or asterisk, the floating point answer is two's complemented

before return.

3.4 Common Tables & Routines}

The conversion routines @SFC and @SCF reference a common routine called
@XC, which has four entry points. @FXC occupies a total of 213g (13944)
locations. Since @FXC is common to both @SFC and @SCF, it need appear only
once if the conversion routineé are used together. In the discussion of @FXC
which follows, each of the four entry points is treated separately for the

sake of clarity.

3.5 Character Set Table:

NAME:

FUNCTION:

NOTES:

LENGTH:

3-8

Locatio

@FCST
@FCST+1
@FCST+2

" @FCST+3

@FCST+4
@FCST+5
@FCST+6
@FCST+7
@FCST+1

FLOATING POINT MANUAL
74-44-001-C

@FCST

Common external character set table for
floating point data conversion routines.

The table is ordered as follows:
n Contents

code for zero
code for nine
code for +
code for -
code for *
code for .
code for E
code for space

0 code for delimiter

The standard table is in full 8-bit ASCII.

The delimiter character at @FCST+108 is a

carriage return and may be changed if

desired.

The entire table may be replaced with a
different character set provided that the
numeric codes in the new sét are sequential
and the code for zero (0) is less than the
code for nine. No code may occupy more

than 15 bits.

12g (1030) locations

FLOATING POINT MANUAL

74-44-001-C
3.6 Floating Point Powers of Ten Table:
NAME: @FPT
FUNCTION: . Common floating point positive powers of

109 table for floating point data con-
version routines. Each floating point
power occupies two locations in the table.

The table is organized as follows:

@FPT: WRD 45473,46777 constant for 1038
WRD 74136,160773 constant for 1037
WRD 40000, 201 constant for 100
NOTE: : @FPT is located at @FCST+12g

LENGTH: ‘ 116g (7810) iocations

3-10
FLOATING POINT MANUAL

74-44-001-C
3.7 Left Shift FAC:
NAME: @LSHF
SUBROUTINES CALLED: none
ALTERED REGISTERS & FLAGS: none
CALLING SEQUENCE: Load AX with the negative shift count
 JU @LSHF

return

ARGUMENTS : ' Register AX contains minus the number of

places to left shift FACHI, FACLO

FUNCTION: Performs double precision left shift of
FACHI, FACLO. On return, the shifted
result is in AX (MSH), AY (LSH). Any

.carry out of MSH is found in location

@IG+H].
ERRORS : none detected
NOTES: @LSHF=@FCST + 170,

@DIGHI=ELSHF + l4g
LENGTH: 238 (1910) locations

3.8 Multiply FAC by Ten:

NAME:

SUBROUTINES CALLED:

ALTERED REGISTERS & FLAGS:

CALLING SEQUENCE:

ARGUMENTS :

FUNCTION:

ERRORS :

NOTES:

LENGTH:

3-11

FLOATING POINT MANUAL
74-44-001-C

@10X
@LSHF

FAC
JU @0X
n/a

Performs unsigned multiplication of
FACHI, FACLO by 107n. The most sig-
nificant word of the three word product
is returned in AY. The second and
third words of the product are found

in FACHI, FACLO respectively.
n/a

@10X=@FCST+1308

408 (32lO) locations

4.1

FLOATING POINT MANUAL
74-44-001-C

CHAPTER FOUR

EXTENDED COMMANDS

Introduction:

In addition to the basic f}oating point interpreter, a set of matﬁematical
functions‘is supplied which can be invoked by a command in the’same-line with
the basic commands. These functions also call the‘floating interpreter and
since the iﬁterpreter has already been entered at this point, a push—dowﬁ
scheme is Supplied to gllow'recursive calls such as this. The pﬁsh-down list

will accomodate recursive calls up ‘to seven levels.

It should be noted that all pseudo registers - the floating accumulator,
the temporéry accumulator and index - and the flags, FDFLG and FXFLG, are
common to all levels of the recursion. 1In other words, if an extended func-
tién which calls the interpreier recursively is invoked by a command, these
registers and/or flags may be altered. Information detailing such factors

is supplied in the documentation accompanying the individual package.

The push-down scheme and command code structure is tailored so that the
user may easily add his own functions. The procedure for doing this is

described in section 5.3.

The mathematical subroutines which are supplied with the extended package
are SINE, COSINE, ARC TANGENT, LOG,, EXPONENTIAL, and SQUARE ROOT. The com-
mands associated with these are FSIN, FCOS, FATN, FLNE, FEXP, and FSQT (codes
31, 32, 33, 34, 35, and 36) reépectively. They each perform the desired
function on the contents of the floating pseudo-accumulator and(retufn the
results in the same register. Errors which can result, such as ;ttempting

to take the square root or log of a negative number, are flagged by the

4-2
FLOATING POINT MANUAL
74-44-001-C

routines in internal locations not accessible in interpretive mode, i.e.
cannot be tested with an interpreter command. An error trap routine is
available which will handle these and other errors when they occur (see

Appendix E).

In the writeups that follow, FAC is the floating pseudo-accumulator,
FIM is the temporary floating pseudo-accumulator, FDFLG is the divide check

flag, FXFLG is the exponent overflow flag, and FINDX is the pseudo-index.

4.2 Sine, Cosine:

COMMAND:

FUNCTION:

ERRORS:
ALTERED REGISTERS & FLAGS:

METHOD:

4-3
FLOATING POINT MANUAL
74-44-001-C

FSIN (code 31), FCOS (code 32)

a. FSIN -~ calculates the SINE of the
contents of FAC which is assumed to be
a radian argument and replaces FAC

with the result.

b. FCOS - calculates the COSINE of
the contents of FAC which is assumed to
be a radian argument and replaces FAC

with the result.
none
FAC, FTM, FXFLG

For FCOS, the absolute value of FAC is
subtracted from T[/2 (=1.570796) and the
SINE of the result is taken.

For FSIN
multiplied by 2/YJ to convert it into
units of a quarter circle, and the result
is checked for its absolute magnitude
.being less than one. If so, it is a
first quadrant quantity and the procedure
continues with the series calculation
described later. If the magnitude of the
result is greater than or equal to one,
its sign is saved, it is forced positive,
and the integer portion is shifted out -
leaving a positive fraction (referred to
as Y in the following). The last two
bits of the integer portion and the sign
are used to determine which quadrant the
original argument was in and the quantity

Y is altered as follows:

b=4
FLOATING POINT MANUAL

74-44-001-C

sign last two bits Y quadrant

+ 00 >y I

+ 01 1-Y—>¥Y II

+ 10 | -¥->Y I1I1

+ 11 L+ Y27 1v

- 00 1>y v

- 01 -1 +Y¥Y->Y : .III

- 10 Y—=>Y II

- llb : . 1-Y—>Y I

This new value of Y is then treated as a ffaction and is normalized.

The series used to calculate the sine is basically a 5 term Chebyshev
economized polynomial approximation of a 6 term McLaurin series for sin (-—'ZTY)
The coefficients are further "adapted" to allow the series ﬁp be calculated
with one less multiplication than would be the case for a standard polynomial

evaluation procedure. This results in the sine being calculated as follows:
) = - * * *
sin (121;{) (z-y+ A2) Z+ A3) A4 Y

where

Z=(Y+4) *Y+4

and
Ay = -14.93104811
Ay = =39.74079011
Ay = +367.8139482
Ag = +23410.00773
A, = +0.0001514440767

Accuracy is 6 + significant decimal digits for arguments in the first

4-5
FLOATING POINT MANUAL
74-44-001-C

quadrant ([FAlefgs. Accuracy loss is about two thirds of a decimal
digit for each complete rotation, i.e. if 2Trhj§iFAC!<CZTT(n+l), the ac-

curacy is about 6 - %n decimal digits.

4-6 FLOATING POINT MANUAL

74-44-001-C
4.3 Arc Tangent:
COMMAND: ' FATN (code 33)
FUNCTION: The arc tangent of the contents of FAC

replace FAC. The result is in radians

and lies in the range (_'%T’ +1%-).

ERRORS : | none
ALTERED REGISTERS & FLAGS: FAC, FTM, FDFLG, FXFLG
METHOD: o The argument (FAC) is checked for its

absolute magnitude being greater than or
equal to one. If so, a flag is set and
the reciprocal of the argument is taken

and replaces FAC.

The arc tangent of the quantity in FAC
"is then approximated by

(Ag + A1 X%+ A,x%)
Z = ATAN X = X * (Bg + B1X4 Box%)

where X is the argument and
0.6402481953
Ay = 0.4229908144
0.0264694361
0.6402487022
0.6363779373
0.1108328778

&
"

FEES
D R

If the flag was set by the initial check,
the value Z is checked for + or -. If Z
is +, 2 - Z)replaces Z. 1f Z is -, |
(-—121‘+ Z) replaces Z. (This is effected
by subtracting Z from + or - g’depending
on the sign of Z.)

- If the flag was not set by the initial
-che.ck, the value Z is not altered. Accur-

acy is 6+ significant decimal digits for all
arguments.

4.4

Natural Log:

COMMAND :

FUNCTION:

ERRORS :

ALTERED REGISTERS & FLAGS:

METHOD:

4-7
FLOATING POINT MANUAL
74-44-001-C

FLNE (code 34)

The natural log of the contents of FAC
replace FAC.

If FAC is negative, a flag (FNLNF) is set,
FAC is forced positive, and the natural

log taken.:
FAC, FTM, FXFLG, FNLNF (FPLNE+4)

The quantity in FAC is

Z=X "+ 2l where .58£x<1 and I is an

integer.

1]

1n [X * 213
In X + I 1n2

ln Z

The quantity 1n X is approximated by the

polynomial.

o % Y
o]

- « - . 7~ Y Y
InX=1nA -2 (Y + Y3/3+Y/5+7Y//7)

which is a Taylor series evaluated at A

The product [I 1n 2] is added to 1ln X, and

the sum is left in FAC.

A = 0.70710678
1n A = 0.34657359
1n 2 = 0.69314718

Accuracy is 6+ significant decimal digits
except for .904Xz£1.110. 1In the latter

range, accuracy decreases as Z=P1.

4.5

Exponential:

COMMAND:

FUNCTION:

ERRORS:

ALTERED REGISTERS & FLAGS:

METHOD:

4-8

FLOATING POINT MANUAL
74-44-001-C

FEXP (code 35)

The exponential of the contents of FAC
replace FAC. (FAC = eFAC)

If the result is going to be out of
range, i.e. if FAC = 88.722, a flag
(FEXOF) is set. If FAC was negative,
zero is. left in FAC. If it was positive,

the largest positive number is left.

FAC, FTM, FDFLG, FXFLG, FEXOF (=FPEXP+1)

eX = oX logy e

I +F

=2 =2t . oF

where I is the integer portion

‘and F is the fractional portion of X log, e

2F is computed by the continued

fraction:

A -1
B+F +C
F +

= |

where

A = -34.624680982

B = -17.312340491

C = 104.,0684491

D = 20.813689813
logy e = 1.442695041

Accuracy is 6+ significant decimal digits
for IXISlO. "Accuracy decreases slowly as
'Xl becomes large until athlﬂsSS, the ac-

curacy is 5+ significant decimal digits.

FLOATING POINT MANUAL
74-44-001-C

4.6 Square Root:

COMMAND : FSQT (code 36)

FUNCTION: ' The square root of‘FAClreplaces FAC.
ERRORS: ‘) If FAC is negative, it is forced posi-

tive, and FSFLG (internal to the square
root routiné) is set non-zero. If FAC

is positive, FSFLG is set to zero.

ALTERED REGISTERS & FLAGS: ' FAC, FSFLG (=FPSQT + 6)

METHOD: A : ‘After FAC is forced positive and FSFLG
is determined, the exponent of the re-
sult is determined by dividing FACXP
by two (by shifting right once) and
adding 100g to preserve the excess 200g
notation. If the original exponent was
odd; the shifted FACXP is increased by
one; otherwise, it is left alone. If
the original exponent was even, FACHIL
and FACLO are shifted left once. Since
the algorithm treéts FACHI and FACLO as
a 32 bit positive fraction with the
‘binary point to the left of bit 15 of
FACHI, the fact that the left shift will
set the sign bit (bit 15) of FACHI does

not matter.

The algorithm then proceeds to determine
a fourteen bit first approximation to
the square root by a method based on the
fact that N2 is the sum of the first N
0odd numbers. This method also leaves as
a "remainder" the difference between the

- square of the approximation and the original

4-10
FLOATING POINT NUMBER
74-44-001-C

number. This remainder and the initial
approximation are then used for one
Newton-Raphson iteration which completes
the square root using the single pre-
cision divide entry (FSDVD) of the
floating point package.

N

Accuracy is 6+ significant decimal

digits for all input arguments.

5.1

5-1

FLOATING POINT MANUAL

74-44-001-C

CHAPTER FIVE

NON-INTERPRETIVE MODE USAGE

Introduction:

Certain sections of the fleoating point interpreter are directly
accessible to the user without the need to supply commands. These sec-
tions may be invoked by a JU SUBR instruction and, after the operation
is completed, will return control to the instruction following the jump.
In order to use these routines successfully, it is necessary to knqw.that
in addition to the pseudo—accumulafor'(FACHI,-FACLO, and FACXP) there is
a "temporafy" accumulator (FTMHI, FTMLO, and FTMXP) which is used to
contain the floating argument of a Type II command during the execution
of the operation (see 1.4). This temporary pseudo-accumulator, referred
to as FIM, is loaded in the same manner as FAC (see FLDA instruction in
2.2.1). 1If the user desires to access the routines described in this sec-
tion, he may need to 1dad FTM in addition to FAC for those rdutines that

operate on both accumulators.

These sections will be described as subroutines since they are essen-
tially used in this manner when accessed directly. When the floating in-

terpreter resides in memory, all of these subroutines also lie in memory.

5.2 Subroutines:i

5-2

FLOATING POINT PACKAGE
74-44-001-C

5.2.1 Double Precision Fixed Point Add

NAME:
CALLING SEQUENCE:

INPUT:

FUNCTION:

NOTES ;

FDAD
JU FDAD

FACHI, FACLO; FTMHI, FTMLO; AO must be in
ADD state.

FACHI, FACLO and FTMHI, FTMLO are treated .
as signed double precision numbers and
added. The result of the addition ap-
pears in FACHI, FACLO. FTMHI, FIMLO are
left unchanged.

If arithmetic overflow occurred (two
numbers of like sign are added and the
result has opposite sign), the link

will be set to 1. If no arithmetic

overflow occurred, the link will be

zZero.

The AO is in the ADD state upon return.

It is possible to generate the maximum
negative number (FACHI = 100000g, FACLO =
000000g) , which is not considered a case
of arithmetic overflow; and so the link

will not be set.

5-3
FLOATING POINT MANUAL

74-44-001-C
5.2.2 Double Precision Fixed Point Multiply
NAME: . FDMPY
CALLING SEQUENCE: . JU FDMPY
INPUT: . FACHI, FACLO; FTMHI, FTMLO

. AX must be set to the value in FTMHI
AY must be set to the value in FTMLO

The AO must be in the ADD state

FUNCTION: FACHI, FACLO and FTMHI, FTMLO are
treated as signed double precision
numbers and are multiplied. The high-
order 30 bits of the 62 bit product
are returned, right justified, in
FACHI, FACLO. The value in FTMHI,
FTMLO is unchanged.

The AO is in the ADD state upon return.

NOTES: The 30 bit product is inaccurate in the
right-most two bits. If FACHI, FACLO
and FTMHI, FIMLO are each considered as
a double precision fraction with its
binary point immediately to the right
of the sign, i.e. between bits 14 and
15 of thevhigheordervwofd, the binary
‘point of the product will be shifted
right once so that it is between bits
13 and 14 of FACHI.

FLOATING POINT MANUAL
74-44-001-C

5.2.3 Double Precision Fixed Point Divide

NAME : _ FDDIV
CALLING SEQUENCE: JU FDDIV
INPUT: FACHI, FACLO; FTMHI, FTMLO

AX must be set to the value in FTMHI
AY must be set to the value in FTMLO
The AO must be in the ADD state

FUNCTION: FACHI, FACLO and FTMHI, FTMLO are
treated as signed double precision
numbers, and the former is divided
by the latter. The quotient appears
in FACHI, FACLO. The value in FTMHI,
FTMLO has béen destroyed.

The quotient will be 30 bits in FACHI,
FACLO with the binary point displayed
one position to the right in the same

way as explained in the note for FDMPY.

The absolute magnitude of :FIMHI, FTMLO
must have bit 14 of FTMHI set for the
divide to take place. . If this con-
dition is not satisfied, divide check

will occur.

The AO is in the ADD state upon return.

NOTES: A The rightmost three bits of the quotient
are inaccurate. Divide check causes
FACHI, FACLO to be set to a large double
precision number of the sign which would
result if the divide could take place
(FACHI, FACLO = 077777, 177400 or;iOOOOO,
000400 for + and - respectively); also,
FDFLG is set non-zero. A successful

divide sets FDFLG to zero.

5.2.4 Single Precision Divide

NAME:
CALLING SEQUENCE:

INPUT:

FUNCTION:

This code may be
eliminated if the
remainder is to be
disregarded.

RRC
SFM

NOP

FLOATING POINT MANUAL
74-44-001-C

FSDVD
JU FSDVD

AX = high order dividend |must be a posi-
FLODV = low order dividendftive 30 bit
double preci-
sion number (see
below)

AY = negative divisor

The AO must be in the ADD state.

‘This is an inner loop which, if used
correctly, can be invoked to supply an
unsigned single precision divide. The
quotient is incomplete in the sense that
it is right shifted and truncated upon

return.

To-obtain a complete single precision
unsigned divide, the following procedure
may be used. First, load AX and the lo-
cation FLODV with a valid two word posi-
tive product (bits 14 and 15 of AX must
be zero). Tﬁen load AY with the positive
single precision divisor and twos comple-
ment it. The following code will then

perform the divide:

FSDVD ; INCOMPLETE QUOTIENT IN TRP
A0,L1,0 3GET LAST BIT OF QUOTIENT
NOT LNK ;UPDATE ‘
AO,AX ;REMAINDER

sIN AX

TRP,L1,AY ;TRUE QUOTIENT IN AY

5-6
FLOATING POINT MANUAL
74-44-001-C

Note that the incomplete quotient is in
the TRP register on return from FSDVD.
The AO is in the ADD state upon return.

If either the link is set or AY (the
final quotient) is negative following
tpis code, divide check has occurred.
This means that the high-order portion
of twice the dividend was greater than
or equal to the divisor, and the quotient

is incorrect.

NOTES: | No flag is set if divide check occurs.

5.2.5 Floating Point Normalize

NAME:
CALLING SEQUENCE:
INPUT:

FUNCTION:

or,

5-7
FLOATING POINT MANUAL
74-44-001-C

FNORM
JU FNORM
FACHI, FACLO, FACXP

Same as FNOR command (see 2.2.3), in-
cluding the setting of FAC and FXFLG
should exponent overflow or underflow

occur.

The advantage of the accessibility of
this routine lies mainly in the saving
of time. For instance, to convert a
'single.precision integer value to

floating point, the following two

methods could be used. (Assume the
integer is in AX, and the floating

equivalent is wanted in location X.)

RM AX, FACHI
ZM FACLO
MRI 217, AX
RM - AX, FACXP
Ju FNORM

JU $SFL
FSTA X

FEXT

RM AX, FACHI
zM FACLO
MRI 217, AX
RM AX, FACXP
Ju $SFI
FNOR

FSTA X

FEXT

FLOATING POINT MANUAL
74-44-001-C

Version 1) takes one more location in

core and saves about 80 machine cycles.

NOTE: The AO may not be in the ADD state upon

return.

5.2.6 Negation and Store

NAME:
CALLING SEQUENCE:
INPUT:

FUNCTION:

NAME:
CALLING SEQUENCE:
INPUT:

FUNCTION:

NAME:
CALLING SEQUENCE:
INPUT:

FUNCTION:

NAME:
CALLING SEQUENCE:
INPUT:

FUNCTION:

5-9
FLOATING POINT MANUAL
74-44-001-C

FACMP, FACMA -
JU FACMP or JU FACMA
FACHI, FACLO or AX, AY

a) FACMP - replaces FACHI, FACLO with
its two's complement. Result is
also returned in AX, AY.

b) FACMA - replaces FACHI, FACLO with
the two's complement of the double
precision number in AX, AY. Result

is also returned in AX, AY.
FICMP, FICMA
JU FTCMP or JU FTCMA
FTMHI, FTMLO or AX, AY

a) FTCMP - replaces FTMHI, FTMLO with
its two's complement. Result is
also returned in AX, AY.

b) FTCMA - replaces FTMHI, FTMLO with
the two's complement of the double
precision number in AX, AY. Result
is also returned in AX, AY.

FASAX
JU FASAX
| AX,AY

Stores AX into FACHI and AY into FACLO

FTSAX
JU FTSAX
AX,AY

Stores AX into FTMHI and AY into FTIMLO

5-10

5.2.7 Generate Zero or Largest Number

NAME:
CALLING SEQUENCE:
INPUT:

FUNCTION:

NAME:
CALLING SEQUENCE:
INPUT:

FUNCTION:

FLOATING POINT MANUAL
74-44-001-C

FOFAC
JU FOFAC
noné

sets FACHI, FACLO and FACXP to zero
also returns AX and AY = 0

FCMAX
JU FCMAX
FACHI

FACHI, FACLO, FACXP will be set to the
maxiﬁmm possible floating point number
of the original sign of FACHI.

1) 1If FACHIK O, this routine sets
FACHI = 100000
FACLO = 000400
FACXP = 000377
2) If FACHI2O0, this routine sets .
FACHI = 077777
FACLO = 177400
= 000377

FACXP

and AY will be equal to
the value stored in FACHI and FACLO re-

Upon return, AX

spectively.

5-11
FLOATING POINT MANUAL

74-44-001-C
5.2.8 Floating Arithmetic Right Shift
NAME: FARSN
CALLING SEQUENCE: JU FARSN
INPUT: AX, AY, FARSC
FUNCTION: . This routine arithmetically right shifts

the double precision number in AX, AY
by the number of places indicated by
-FARSC.

NOTES: FARSC must be set to a negative count
before calling FARSN.

5.3

5-12
FLOATING POINT MANUAL
74-44-001-C

5.2.9 Other Notes on Non-Interpretive Usage

1) The pseudo-index is kept in location FINDX and may be set by the
user without using an FLDX command (see 2.2.4) by simply storing
the desired value via a RM R,FINDX where R is a register con-

taining the index value. This, as with FNORM, is a time saver.

2) The two flags, FXFLG and FDFLG, are in locations defined by their
names, and can be checked (or cleared) in non-interpretive mode

to save time.

3) The usage of the locations FTBLE, FARGD, FETCH, and FMASK which

are entry points to $SFI is described in 5.3.

User Generated Extended Functions:

If the user desires to add functions of his own to the extended package,

the procedure is quite easy as outlined below.

The extended package as delivered uses command codes 00-368 inclusive
and lOl8 through 1108 inélusive. There are available codes of 37g-77g inclu-

sive which the user may assign to his own functionms.

User functions may be of two types - invoked by one ﬁord éommands or
invoked by two word commands where theAsecond word is an argument address
or value. if deferred mode addressing is desired as an option for the same
function, it must be accomplished by user code. Setting bit 6 of the command
code to attempt deferred addressing will cause the floating‘interpreter to

take the error halt.

Suppose the command name used to invoke the function is to be FFCN

5-13 FLOATING POINT PACKAGE
74-44-001-C

assigned to code 378. Assume further that the entry point to the function

is to be FPCN.

Step 1)

Step 2)

Step 3)

Step 4)

Using the Source Text Editor, substitpte the statement WRD FPCN
to the Command Table ($SFIC Soﬁrce - see operating instructions)
for the statement WRD FPUNT ;37 which is on the supplied tape.
The user code which accomplishes the function must have the
following statement at the beginning:

| ENTRY FPCN
where FPCN is the location at which the user function
begins execution.
Thellast instruction executed by the user function must re-~
turn control to FGET; usually via a JU FGET. Remember that
when the user function is invoked by a command, the interpreter
passes control to the user function. The JU FGET returns control

to the interpreter.

If the function.the user is generating needs the floating point
capabiiity supplied by the interpreter, the user function may
call the inte;preter followed by a list of commands to accomplish
fhe task subject to the following restrictions:
a) The command name corresponding to the function it-
self (in this case, FFCN) may not be used.
b) Commands which cause the interpreter to be called re-
cursively may be used so long as care is taken not to
exceed seven levels of recursion in total (see 4.1)
(remember that the function‘being coded is at least
at level 1 during its execution, and if it calls the
. interpreter, all commands in the list are;at least at
level 2).

¢) No function invoked by a command may have in its code

5-14
FLOATING POINT MANUAL
74-44-001-C

a call to the interpreter whose command string con-
tains the command name corresponding to the function
itself. This is an indirect violation of restriction

a) above.

Step 5) Assemble the function and the new Command Table and load these

objects along with the rest of the system.

Notes: If the function being generated is invoked by a two word com~
mand whose second word is an argument, one and only one of the follow-

ing steps must occur during its execution.

a) JU FARGD
This fetches the contents of the location following the command into
register AX.
b) JU FEICH
This calls FARGD and uses the contents of the location following the
command as an address ﬁo fetch a floating point argument which is
placed in FTM. Also, AX and AX will be set to the value in FTMHI
and FTMLO respecfively upon return. |
c) ZM FMASK

JU FETICH
This causes deferred fetching of a floating point argument. The con-
tents of the locatioﬁ following the command is used as an address of
another location which is incremented twice to form the addresses of

the floating argument which is loaded into FTM and AX, AY as in b).

Examples:

1) FCSX is to be the command name, 1 word, code 378' When in-

voked it.is to take the COSINE of the SINE of the value in FAC. Assume
Step 1 has been accomplished by adding the statement WRD FCS to a Command

5-15 FLOATING POINT MANUAL
74-44-001-C

Table tape which already includes the SIN and COSINE routines. This

function may be accomplished by the following code:

ENTRY FCS
FSIN = 31
FCOS = 32
FEXT = ¢
FCS: JU $SFL : jenter floating interpreter
FSIN | 3sin of FAC
FCOS jcos of FAC
FEXT jexit interpreter
JU FGET jreturn to interpreter
END

When this and the new Command Table are assembled and loaded with
$SFL and the SINE, COSINE routine, the user may now call the routine
in the floating interpretive mode as follows:

FCSX = 37

JU $SFI
FCSX

FEXT

2) TFMCS is to be the command name, 2 words, assigned to code 408.
When invoked, it is to take the;SIN of the COSINE of the value‘in FAC
and set the sign of the result to the sign of the floating;point argument
whose address is the second word of the command. Step 1 requires the
neﬁ command entry (say FMC) to be added to a Command Table tape which

-:includes the SIN and COSINE. This function could be coded as follows:

ENTRY FMC

FCOS = 32

FSIN = 31

FABS = 14

FEXT = ¢

FMC: JU FEICH
RMI AX, O
JU $SFIL
FCOS
FSIN
FABS
FEXT

MR FMC + 3,AX

JC AX, GEZ, FGET

JU FACMP

JU FGET

END

5-16 FLOATING POINT MANUAL
74-44-001-C

sfetch arg to AX,AY

;save MSH arg (sign of arg)
- senter floating interpreter
scos of FAC

ssin FAC

;abs value of FAC

;exit floating interpreter
sget sign of arg

;Plus, exit

sminus, comp FAC

;return to interpreter

_ When this and the new Command Table are loaded with $SFI, and

the SINE, COSINE routine, it may be invoked by another routine via

.

JU $SF

.FMCS = 40

I

5-17 : FLOATING POINT MANUAL
74-44-001-C
3) FMCSD is to be the command which does the same thing as
FMCS, only using deferred mode addressing for the argument. FMCSD must
be assigned a different code - say 418 in the routine that invokes it.
Both FMCSD and FMCS may be coded in the same r&utine as follows, assuming

their corresponding entry names have been added to the Command Table Tape.

ENTRY FMCD,FMC

FCOS = 32
FSIN = 31
FABS = 14
FEXT = ¢

FMCD: ZM FMASK
FMC: JU FETCH
RMI AX, 0
JU $SFI
FCOS
FSIN
FABS
FEXT
MR PMC + 3,AX
JC AX, GEZ, FGET
JU FACMP
JU FGET

END

6.1

6-1 FLOATING POINT MANUAL
74-44-001-C

CHAPTER 6

OPERATING INSTRUCTIONS AND SYSTEM GENERATION

Using the Package as Supplied:

An equate tape labeled $FCQ is supplied for the package as delivered.

This tape is a source tape containing the equates for all the floating

point commands. It is intended to be copied via the Source Text Editor (%STE)

’

onto any user written source tape which uses the floating point system in
order to define the commands. For convenience, the user may preceed
these definitions with an 'NLIST' statement and follow them with an 'LIST'
statement to avoid having the lengthy listing of these equates. Of coursé;
commands which afe not used in the particular program may be edited out
of the source as well to shorten assembly time. A commented listing of
this tape is in Appendix B. The supplied tape is not commented.

Also supplied is a source tape labeled $SFIC which consists of a
table ofbaddresses of entry points in $SFI corresponding to each

has two object versions
of this tape--one with the basic commands only (labeled also $SFIC) and.
one with the basic commands and all of the extended functions as well
(labeled $SFEC-extended). A listing of the basic $SFIC tape is
in Appendix C. |

The basic steps for using $SFI as supplied are as follows:

1. Using %STE, construct a source tape consisting of the user

program and command definitions (which can be read in from $FCQ).

Note that the definitions must come somewhere after any ENTRY

statements in the user program.

6-2 FLOATING POINT MANUAL
74-44-001-C

2. Assemble the user program using ZRAS

3. Load the user program, the version of $SFIC desired, then the
other components of the floating point system which may be done
via a library load using ZLLH or via the individual objects
using either ZRLH or ZLLH.

4. Run it!

1. Whenever any component of the floating point system is to be
used, some version of $SFIC must be loaded.
2. It is good practice to initialize $SFI when starting up or
restarting a program b; storing FLIST-1 into FPUSH via,vé.g.
MRI FLIST-1,AX
RM AX,FPUSH
This resets the push-down list which may have been left
"hanging" by stopping the program in the middle of a floating

point operation.

6.2 User Generated Systems

If the user desires a configura:ion of the floating point system
other than that supplied he must edit and assemble the SSFIC tape supplied
with the package (see also Chapter 5)7

Every command uéed in an interpretive striqg foilowing a JU $SFI
must have a corresponding entry in the Command Table ($SFIC) loaded with
$SFI. This entry defines the address to which the interpreter is to
pass control in order to perform the command. It may be an address within
$SFI, or in one of the extended funétions, or in a user written e#tended

function. All unused commands go to the entry point in $SFI labeled

6-3 FLOATING POINT MANUAL
74-44-001-C

'FPUNT'. The source tape for $SFIC supplies the appropriate labels for
all the basic commands at the proper place in the table (code n is the nth
entry - see listing in Appendix C).

The user need only change the 'FPUNT' at the appropriate entry in
$SFIC to the desired name (which must be an entry point in some

program), reassemble the tape and load the resulting object along with

the rest of the system.

Floating Point Manual
74-44-001-C

7-1
Model 40 Floating Point

Conversion of 71-44-001-C (Model 30 Manual)

This package is upward compatible with floating point software
written using the Model 30 floating point package. The only differ-
ences are 1) the Model 40 fioating point is faster and uses less
space, 2) FAC, and FTM occupy registers 30-35 and 3) the usage of

some of the subroutines in non-interpretive mode is slightly different.

Any changes in going from Model 30 to Model 40 floating point
are described in this document by referring to changes that should
go into the Floating Point Manual if the Model 40 version is being

used.

Pg. 1-7 last 6 lines, change to:

registers in the interpreter and is used to contain the:left-hand
argument of a binary floating point command as well as the results

of any floating point command. It is organized as follows:

reg. name
35 FACHI - contains. high order mantissa and sign of
value in FAC ‘ ’
34 FACLO - contains low order mantissa of value in FAC
33 FACXP - contains excess 2008 exponent of value in FAC

Pg. 1-8 first three sentences, change to:

ii) FIM - temporary pseudo- accumulator. This consists of three
registers analogous to FAC. They are named FIMHI (reg. 32),
FIMLO (reg. 31), and FTMXP (reg. 30).

7-2

Pg. 3-2 second line from top, change to:
NAME: @SFC4
Pg. 3-3 seventh line from bottom, change to:
LENGTH: 263g(1797¢)
Pg. 3-5 second line from top, change to:
NAME: @SCF4
Pg. 3-7 second line from top, change to:

LENGTH: 3675 (24710)

Floating Point Manual
74-44-001-C

Pg. 3-7 last paragraph, change all references to @SFC to @SFC4, @SCF to

@SCF4 and @FXC to @FXC4.

Pg. 3-7 first line, change reference to @SFC to @SFC4.

Pg. 3-7 fifth line from bottom, @FXC4 occupies a total of 175g(125,)

locations.
Pg. 3-10, change page to read:

3.7 Left Shift FAC:

NAME: @LSHF

SUBROUTINES CALLED: none

ALTERED REGISTERS & FLAGS: ~ FTMLO,FTMXP

CALLING SEQUENCE: Load FTMXP with negative shift count.
JU @LSHF '

return

Floating Point Manual

. 74-44-001-C

ARGUMENTS ; FTMXP (reg. 30) contains minus the
number of places to left shift FACHI,FACLO
(regs. 35 and 34).

FUNCTION: Performs double precision left shift
' of FACHI,FACLO. On return, the shifted
result is in AX(MSH),AY(LSH). Any
carry out of MSH is found in FTMLO.

ERRORS : None detected
NOTES: @LSHF = @FCST+16lg
LENGTH: ' ~ 14g(1213) locations

Pg. 3-11 fourth line from top, change to:
ALTERED REGISTERS & FLAGS: FAC,FTM

Pg. 3-11 last line, change to:

Pg. 5-3 delete 5th and 6th lines from top (i.e. AX and AY do not need

to be set to FTMHI,FTMLO).
Pg. 5-4 same as Pg. 5-3

Pg. 5-5 delete this page entirely, single-precision divide is supplied

on the extended arithmetic operator (see EIR Devices Manual).

Pg. 5-6 same as Pg. 5-5

Floating Point Manual
74-44-001-C

Pg. 5-7 change line 17 through last line to:

1) RR AX,FACHI

ZR FACLO
MRI 217,FACXP
JU FNORM
JU $SFI
FSTA X
FEXT

or,

2) RR AX,FACHI
ZR FACLO
MRI 217,FACXP
JU $SFI
FNOR
FSTA X
FEXT

Pg. 5-8, change "8C machine cycles" to "27 machine cycles".

Pg. 5-9 delete all references to "Result is also returned in AX,AY"
Pg. 5-9 delete last eight lines, i.e. FASAX and FTSAX do not exist.
Pg. 5+10 fourth line from top, change to:

sets FACHI,FACLO,FACXP to zero. No othe? registers are affécted.
Pg. 5-10 delete last three lines, i.e. AX,AY are not affected.

Pg. 5-11 delete this page, arithmetic right shift is supplied on the

extended arithmetic operator (see EIR Devices Manual).

Pg. 5~14 last sentence of paragraph b), change to:

AX and AY are destroyed. .

Floating Point Manual

15 74-44-001-C

Pg. 5-14 last line of paragraph c), change to:
the floating point argument which is loaded into FIM as in b).
Pg. 5-16 after line saying FEXT = 0, insert:
FIMHI = 32
Pg. 5-16 change line beginning with RMI AX,0 to say:
RMI FTMHI,J ;save MSH arg (sign of arg)

Pg. 5-17 same changes as on pg. 5-16

Appendix B - replace with attached Appendix B
Appendix F pg. 3 paragréph 1) b) ¢) and d), change to:
b) FSPLT is iﬁitialized to 06 0010 12
c) FSPLT+l is initialized to 377

d) FPSTA+3 is initialized to FARGD

xr g1
paz2
2e3
. ee4
eas

2e6

a7
ege
209

ete

211
612
g13
g14
815
€16
617
p18
219

220 .

€21

g2z .

p23

E24

¢25
€26
27

.e28

€29
e3e
631

032

£33

esy

235

36

237

€38

39

cug

P41
£42
243
guy
€45

es4e

ga7
748

REPLACES APPENDEX B

: : 5 : i : : ' : : '
EM OO DO RNMMOM OO N N OO DO Mo DD NN NN 0RO NDS

© egee3e
" eBE031
" eegp32
" EECe33
epee3y
 rgeezs
_regeco
PEROCT
e0E1€1

C pEeee2

C geg1e2.
AL IE
. BeE1e3.
" ggeocy
...eae1eq.
c gagces
© geeies
* gBPEE6
_ege1g6

ceeoe7

eecie7
egce1 o
pecile

pees11

_eeept2.

022813

eee@1y

peeeg1s

gaeels
goeot7
.. Epeeze
AT
.. tepez2
T egee23

ceee24

o P3Ee2sS

. eeee26.
Cpgeez7
| foeede
" epeeld
T gerE2
T EZEe33
T peeezd
T rgee3s
T Peeels

33FCOY
374-43-782L

FSUED

_FJAZ=22

APPENDIX B (MODEL 40)

7-6

- COMMENTED

Floating Point Manual
74-44-001-C

3CRIGE9/HC rOFFAnn EOQUATE TAPE

FITMXP=30
FTMLO=314
FTHMn1I=32
FACXP=33

FACLO=3U

FACHI=35

FEXT=0_

FLDA=1

FLDAD=161

FSTA=2

FSTAD=1g2

FADD=2

FADDD=1¢3

FSuUs=4

FMPY=E

=ied

FMPYD=1€5

FOIvV=¢

FOIvO=1g6 . .

FARK=7

FADNKD=187

FSBr=1p
FS8FKD=1114
FTRA=11

FTIRF=12 . .

FSET=13

FhBS=14

FASC=15
FNOR=16
FNEG=17

FJAFP=21

FJAN=23
FJEV=24
FJOC=Z5
FJIXx=26
FLDX=Z27
FSTx=3g
FSIA=21
FCQE=32

FATAZZ3

FLNE=T0
FEXF=35
FS0T=26

_FJMP=2¢

. ‘ ; .
. : i ; !
“e e e %e Wp N8 e ‘b. e e e e %o e %o e Ne Ny e Ve Ny s e % %o e we W s we
N v l . N

“e \en

s Ve We We We we Vs

s We we %o we Wy

T LOAD

FLOATING

FLOATING

_JUNP
Jume

. STORC

. SOUAKRE"

CFTM EXPONENT

LOW ORDER F TN

HIGH ORDER FTM

FAC EXPONENT

LOW¥ ORDER FAC

HIGH ORDER FAC

EXIT COMMAND C
FAC COMNMAND
LOAD FAf DEFERRED

. STORE FACr .
STORE FAr DEFERRED

ALD
ACGD DEFERRED
SUBTRACT

FLCATING

FLOATING
FLOATING
FLOATING MULTIPLY
FLOATING MULTo
FLOATING DIVIDE
pI1vVvIDE
FLOATING ADD MAcrxrun
FLTNG ADD MAG CEFEKRE

FLCATING SUB. mArNITvnt

FLTNG S.UE MAG ﬁFFEhRFﬂ

* TRACE 0N

"TRATE OFF
SET ERROF TRAP

" ABSOLUTE MAGNITUCE
SOUARE

NORMALI ZF

NEGATE

UNC ONDI.TIONAL JUMP
JUMP IF FA® > 9R = ¢
IF FAC =T

IF FAC < ¢

JUMP IF EXFLG NOT £
JUMP TF FDFLC NOT 2
BUMP INDEXs JMP IF NoT
LOAG pc»tﬁt-lu;rv
PSEULO-IH

SINE

oS INE

ARC TANGENT
NATURAL L QGARITHHN
EXPONENTIAL
ROOT

SUBe DEFERRED

DEFERRED

TEFERRTD

-~

<

FLOATING POINT MANUAL
74-44-001-C

APPENDIX A

Command Summary - Basic

Definitions:
Y ~ address of floating operand
~ address of location containing address - 1 of floating operand
~ address of another floating .command

~~ address of index value

[D]~optional sel_ection of deferred addressing

I ~index value of source or dest'inétion at address Y
A ~pseudo-accumulator (FAC)

X ~spseudo-index register

F as floating value of source or destination at effective address formed

from Y.

Code (octal) Basic Commands Operation Flags - Registers
00 . FEXT exit none : ‘ none
01 [101] FLDA [D] Y F>A none FAC,FTM

02 [102] FSTA [D] Y A—>F ‘ FXFLG ’ FAC
03 [103] FADD [D] Y A+F-SA FXFLG FAC,FTM
04 [104] FSUB [D] Y A-F—3>A . ‘ FXFLG FAC,FTM
05 [105] FMPY [D] Y A*F A . ' FXFLG FAC,FTM
06 [106] FDIV [D] Y A/F—>A ~ FXFLG, FDFLG FAC,FTM
07 [107] FADM [D] Y A+|F|->a FXFLG FAC,FTM
10 [110] FSBM [D] Y A-|F|->A ~ FXFLG FAC,FTM
14 ' FABS | A]>A none FAC
15 FASQ A2 A FXFLG FAC,FTM
16 FNOR normalized A-—>A FXFLG FAC
17 . FNEG . -A>A none FAC
20 FIMP Y jump to Y none none
21 FJAP Y jump to Y if A20 ' none none

22 FJAZ Y jump to Y if A= 0 none none

Code (octal)

Basic Commands

23
24
25
26
27
30

Code (octal)

FJAN
FJEV
FJDC
FJIX
FLDX
FSTX

L T T

A-2

Operation

jump to Y if ACO
jump to Y if FXFLG set 0
jump to Y if FDFLG set 0

X+1-3X,
I—X
X1

jump to Y 1f X O

FLOATING POINT MANUAL

74-44-001-C

Flags Registers
none none
FXFLG (set to zero) none
FDFLG (set to zero) none
none FINDX
none FINDX
none none

Command Summary - Extended Functipns

Extended Command

*)

+)

(1)

31
32
33
34
35
36

If
be

If
be

If
be

FSIN
FCOS
FATN
FLNE
FEXP
FSQT

input argument is

set non-zero (see

input argument is

set non-zero (see

input argument is

set non-zero (see

Operation

SIN (FAC) =>FAC
COS (FAC) —>FAC
TAN"! (FAC) —>FAC
LOG, (]Fac|)—>FAc
eFAC—>pac

V]Fracl>rac

write-up).

write~up).

write-up).

Flags Registers

FXFLG
~ FXFLG
FXFLG, FDFLG
(*)
FXFLG

FAC,FIM
FAC,FTM
FAC,FTM
FAC,FIM

FXFLG, FOFLG (1) Fac, FTM

none (+)

FAC

negative, FNLNF internal to the FPLNE routine will
negative, FSFLG internal to the FPSQT routine will

too large, FEXOF internal to the FPEXP routine will

APPENDIX B

$FCQ

$$FCO - COMMENTED

FLOATING POINT MANUAL
74-44-001-C

%P 21
.. BeB2 374-42-492) e
o3 3GRI9E9/32 C OMMAND CQUATE TAPE
____egy N} " epePeO FEXT=g¢ ;_EXIT COMMAND e
. 285) " g0gee1 FLDA=1 5 LOAD FAC COMNAND
896 B #0016l FLDAD=1g1 ; LOAD FAC DEFERRED
g7 g " EP6@02 FSTA=2 ..3. STORE FaAr-
288 8 e0Fi1@2 FSIAD 122 . 3: STORE FAC DEFERRED
a9 2 " EBEBE3 FADD= ‘s FLOATING AfD .
10) 262193 Fggpg_zes s FLOATING ADD DEFERRED
11 ¢ 230024 FSUE=Y 3 FLOATING SURTRACT
..812 e eee194 FSUEOD=124 __ 3 FLOATING SUBc¢ DEFERRER
13) " 098265 FMPY=E 3 FLOATING MULTIPLY
. 814 ¢ _eeg¢1es FMPYD=1g5 . £ FLOATING MULTo DEFERRES
15) " PBOBOE6 FDIV=6 3 FLOATING DIVIDE
216) 88106 FCIVD=1g 3. FLOATING. vazo: CEFERREL
a17 £ e2ee27 FADF=7 3 FLOATING ADD MAGNITUCE
g18 ‘g _€0e1e7 FADFD=1€7 3 FLTNG ADD MAC ?Er:rEEn
819 [} 000818 FSBM=1g 5 FLOATING SUB, MACNITURE
- 820 e 0082118 FSBrD=119 .3 FLTNG SUP MAG CEFERRLN
21 ¢ 6P0311 FTRA=11 3 TRACE ¢ON I
g22 e 020812 FTRF=12 $ TRACE QFF
623 2 g80013 FSET=13 5 SET ERROK TRAaP
@24 @ . 288014 FABCS= 14 3 _ABSOLUTE MAGB'TUfﬁmuM__ .
225 g g9CPP15 FASQ=15 3. SQUARE
B26 2 BeLet6 FNOR=16 -z NORMALI'ZE e
- 027 e P2C017 FNEG=17 5 NEGATE
g28) " POPE28 FJMF=22 ; _UNCONDITIONAL JuMp
229 8 pege21 FJUAF=21 3 JUMP IF FAf > OR = ¢
238 B 080222 FJUAZ=22 s_JuMe IF FA" = ¢
, 831 e ©BAC023 FJUAN=23 3 JUMP IF FAr < 2
‘832 2 edeg2y FJUEV=24 __.3 JUMP IF FXFLG nor G
833 e 000825 FJOC=25 5 JUMP IF FOFLG NOT &
e34 g " @@E026 FJIX=26 3 _BUMP INCEX, pr IF_NOT ¢
235 e © @@Cce27 FLDX=27 3 LOAD PSEUDO-INCEX
236 @ T EePE30 FSTX=3g . 5 STORE _PSEUCO-INDEX
237 e " E0P031 FSIN=31 3 SINE
P38 # geEP32 FCQS=32 3 COSINE N o
£39 e " BBEB3I3 FATA=23 5 ARCTANGENT
a4e e __E00034 FLNE=34) 5 NATURAL LOGAFITHM
241) © P8RO35 FEXP=35 3 EXPONENTIAL
42 g ~#P0@36 FSQT=36 3 _SQUARE RGOT

FLOATING POINT MANUAL

e110

c-1 74-44-001-C
APPENDIX C
$SFIC
nozi 3SSFIC
802 374-43-4970 . -
P03 3BASIC COMMAND TAZBLE
ap4 ; EN*RY FTDLE _ S
205 1 177777 FTBLE=,-)
_U $06_QPO0RC € QOOCEE NRQ“_EELQAm“__M,LLM“. e
‘U @@7 @0CE1 @ 000Q2CO WRD FPSTA - 32
_uggs ¢ggg2 o gggeea WRD FPADD 3
U Ceo 20Ce: ¢ 282608 WRD FFSUB 34
_u g10 _@arey ¢ ¢ocorg WRD _FFMPY 35 e
U g1l €O0reS ¢ 03C0C0 WRD FPODIV 16,
_U @12 @f@EF06 £ €a0000 __ WRO__FPADM . 37
U P13 20707 ¢ Po0CCD WRD FPSEM 310
U @14 @e001¢ ¢ @gREOCC WRD __FPUNT 511 FPIRN _ e
U 215 08C11 ¢ 600200 WRD FPUNT 312 FPIRF
U g16 03012 0 000 ER0 _MWRD- FPUNT _ 313 FPSET
U @17 €90€13 ¢ 90C2e0 WRC FPABS 514
_ue18 @cFiu. ¢ @eOOED WRD- FFASO 318
U 819 00C1S ¢ 0960CCD WRD FFNGR 316 B
U 828 ¢éTié © ©07000 WRD FPNEG . 317
U @21 68F17 ¢ 09306E0 WRD FPJHP 520 ‘)
U G622 0QC2C @ ¢a2O000 WRD FFJAP 321 '
U @23 ¢g@E21 ¢ 2gCeCce WRD FFJAZ 322
_ U824 e98¢22 ¢ ¢peeCep WRD FPJAN 323
U P25 80F23 p €232000 'HRD FPJEV 324 T
U §26 8@C24 ¢ 030€00 WRD FPJOC ;2¢ _
U @27 00F2S @ 290020 WRD FFRJIX 326
U 628 @@F26 7 09006€0 WRD FFLDX 227
U @29 @eF27 ¢ 0000PC WRD FPSTX 338
U g30 ¢eF3P 6 ¢000C0 WRD FPUNT ° 331 FPSIN -
UE31 PB¢31 ¢ Cco0C0 WRD FPUNT 332 FPCOS
U @832 09¢32 ¢ €90009 WRD FPUNT 33 FPATN
U B33 00€33 ¢ 0000C0 WRD FPUNT ;34 FPLNE
_u @834 geF34 ¢ 9229068 WRO _ FPUNT 335 FPEXP
U e35 g@P3c @ Peeoee WRD FFUNT ,36 FPSOT
U B36 €08F36 ¢ 2p00E0 WRD FPUNT 337 o
837 NLIST 34¢-77 SAME AS 37
g70 3 LIsT e .
U @71 e0®77 ¢ 08 CeP WRD FPUNT 3120 CALWAYS ILLEGAL)Y
U @72 poreC ¢ £002¢28 WRD FPLQAHW~_WWL1E1 (DEFERRED)Y
U @73 9ETre1 © £QC8CO WRD FPSTA 3102 (CEFERRED)
_y_gZQWEQtﬂ?_ﬂwﬂﬁﬂ!ﬁﬂ _WRD FPADD 5123 (DEFERREDN) L
Ue75 ¢eT83 ¢ 200800 "WRD FPSUB 3104 (CEFERRED)
_U B76 0oTEH ¢ €Q0DED WRD _FPMPY - 31¢5 (DEFERRED)
UB77 08765 ¢ POCCED WRD FFDIV 3126 (DEFERRED) T
y P78 POTEE p PQAQOCE WRD FPACM . 31¢7 (DEFERREDY
URe79 0887 ¢ 0000CO WRD FFSBM 3119 (DEFERRED)
esg 1 ~ea _ENOD_

D-1 FLOATING POINT MANUAL

74-44-001-C

APPENDIX D

ZFCG - Floating Point Constant Generator

%#FCG - Floating Point Constant Generator

ZFCG is a utility routine which is provided should the user wish to
use floating point constants whose octal equivalences are unknown. With
ZFCG, the user can type in a floating point decimal number and receive

the equivalent internal floating point representation.

AFCG occupies locations 0-2660 inclusive.

Operating Instructions

1. Load %FCG by means of ZALH.
2. Turn teletype on-line.

3. Set SC=0.

4, Press START.

5. 7%FCG responds with a carriage return, line feed.

i) Anf 1n +A
v s

k! sk e pl i 1
Q) 2

-~ Admad a4
1 10 naracters terminated with an equal

sign (=). The character string should be in the format described

in section 3.3, where the delimiter is an = rather than a carriage
return. Typing a back arrow at any point causes the first previous
non-back arrow to be ignored. Typing rubout at any point causes
%ZFCG to type a carriage return, iine feed, question mark (?) and
returns to step 5. Typing more than 13 characters before typing

an equal sign has the same effect as typing rubout.

7. When the user terminates the character string with the equal
sign, ZFCG responds by typing the 2 word floating point equivalent

(in octal) and returns to step 5.

8. If the character string did not conform to the format specified in
section 3.3, the message SCAN ERROR is typed and ZFCG returns to
step 5.

D-2
FLOATING POINT MANUAL
74-44-001-C

If the character string resulted in a number whose magnitude was
outside the range 1.469369E-39 to 1.701411E+38 or if the character
string contained more than 1010 mantissa digits, the message

ANSWER OUT OF RANGE is typed and %ZFCG returns to step 5.

E-1
. FLOATING POINT MANUAL
74-44-001-C

APPENDIX E

FPSET - Error Trap Routine

Introduction:

A series of floating point calculations on an unknown data base can

generate errors, such as results which exceed the capacity of the machine

or dividing by 0, etc. In order to facilitate the localization of the oc-

currence of such errors, FPSET is provided and serves as an error trap

routine.

interrupt

When an error specified by the user is detected, FPSET will

the operation of the interpreter and give control to a user

supplied error routine. FPSET Supplieé the user error routine with the

following

culations

AX =

AY

TRP =

information, allowing the user to pinpoint the step in his cal-

at which the error occurred:

recursion level at which the command at the address in AY was

executed.

address of command executed immediately previous to detecting

the error,

error number indicating which flag in the user supplied error
list was set non-zero. (TRP = position of address of error

flag in user supplied table (see usage)).

The recursive capability of the interpreter somewhat complicates cer-—

tain usages of FPSET and, for this reason, three modes of operation of

FPSET are

allowed: '"On", "Off", and "Partially On". The latter mode

allows FPSET to keep track of commands and recursion levels without ex-

amining any error flags. The utility of this mode is described in the ex-

amples at

the end of this appendix.

FLOATING POINT MANUAL
74-44-001-C

Usage:

FPSET is controlled by the use of the FSET (code 13g) cbmmand_in the se-
quence of floating commands being executed by the interpreter. There are three

modes of operation of FPSET: 1) ON, 2) OFF, and 3) PARTIALLY ON.
1) To turn FPSET ON, the command is

FSET A

where A is the address of a table with the following format:

A: WRD ERR ;sUSER ERROR ROUTINE ENTRY
WRD FLG1 sADDRESSES OF SYSTEM
WRD FLG2 sFLAGS TO BE CHECKED...
WRD -1 ;END OF TABLE SIGNAL

When this FSET command is encountered with a positive non-zero value for
A, FPSET will examine the state of every flag listed in the table at address A"
after every command executed by the interpreter from thg point of the FSET A
command onward. Whenever a flag whose address is in the user list has become
non-zero (indicating an error), FPSET zeros'the flag, and then gives control
to the user error routine at the address specified in the.firsf word of the

table at A. The information supplied to the user error routine is as stated

in tle introduction.

The user error routine may use $SFI, but any additional errors which might
occur will not be checked by FPSET, and any ESET commands in the command se-
quence will be ignored. If the user wishes to call $SFI in his error routine,
it is up to him to save and restore the states of the interpreter system flags

and the floating accumulator (FAC) before and after such $SFI use.

FLOATING POINT MANUAL
74-44-001-C
2) To turn FPSET '"off'", the command is

FSET O
This completely disconnects FPSET from the interpreter.
3) To turn FPSET ''partially on', the command is

FSET N

where N is any negative number.

In this mode, FPSET will keep track of the current command address and
recursion level but will not examine any flags. If FPSET is at some later
time turned "on' and discovers a flag set non-zero, the level and the com—

mand address will be correct within certain limitations (see Notes).

This mode is useful when the user does not wish to enter his error
routine for errors which occur during execution of a section of his command
sequence. For example, the command sequence may contain an FJEV or similar
test for conditions known to the user, and with FPSET_"on",.these conditions
could be altered (clearéd) if the corresponding flags are in the user error
list at A. In this case, an FSET N (where N<O0), issued before entering this
section, and an FSET A (A>O0, A=address of table); issued after completion of
this section will allow FPSET to retain the necessary information should

other errors occur and allow the section itself to operate properly.

User Error Routine:

Basically, the user error routine may do anything. However, the user must
remember that his error routine is considered as an extension of the inter-
preter. At the completion of the error routine, control should be given back

to the interpreter via a JU FGET or similar return.

Register AX is used as an argument upon return (via JU FGET) and can turn

FLOATING POINT MANUAL
74-44-001-C

FPSET "on", "off", or '"partially on" according to AX>O0, AX=0, or AX<O0
respectively. If AX?)O, it must be the address of an error table as de-

scribed above (it need not necessarily be the same one as before).

Notes:

1) It is generally the case that an error flag is set by the command
immediately preceding the detection of the flag non-zero. In the
case where FPSET was not "on" at that moment, but was turned on
later and found the flag non-zero, FPSET will report that it does
not know which command caused the error by giving an AY value
which points to the FSET "on" command or by AY = -1. The dif-

ference in meaning of the two AY values is as follows:

a) AY = address of FSET "on" command if the flag was non-zero

at the time the FSET "on" command was encountered.

b) AY = -1 if all flags were zero when the FSET "on" was en-
countered, but a flag was set non-zero later at a point
which indicated that the command which caused the error
was at a recursion level one less than the level at which
the error was detected. This situation is avoided if

FPSET is partially on throughout until it is turned on.

2) If the user wishes to restart his entire program or in any other way
wishes to use the interpreter without reloading it, he should make
sure that FGET+l is initialized to FARGD and FPUSH is initialized
to FLIST-1. '

3) A FEXT command does not affect the mode of operation of FPSET, i.e.
upon re-entering $SFI, FPSET will operate as per the last FSET com-

mand encountered before the FEXT.

~ Operating Instructions:

1) Edit the Command Table ($SFIC) source to include WRD FPSET in place
of WRD FPUNT;13 which is on the tape as supplied, and assemble it.

E-5 FLOATING POINT MANUAL
74-44-001-C

2. Load FPSET and the new Command Table with the system.

3. Start user program which has FSET commands in the usual way.

Examples

1: Typical‘usage of FSET "on'" and "off"

User Main Code

ENTRY A

Ju $SFI

sTurn FPSET on

(causes divide check, FPSET gives control to)

This returns control to interpreter

ERR
FXFLG
FDFLG

to execute next command

Errors‘in here
are not detected
by FPSET

;Address of user error routine
;Address of exp over/underflow flag
;Address of divide check flag
;End'of table

User Error Routine

PERR:

ENTRY ERR
. (TRP = 000002
. 3 indicating second
. flag in table at A
. was set)
MRI A,AX ;Turn FPSET back on
JU FGET
END

D-100-%%-%L
TVONVA INIOd ONIIVOTd

Example

2. Use of FSET '"Partially On"

User Main Code User Coded Extended Function
JU $SFI ‘ r—ib FPUFN: JU $SFI
FSET -1 ;turn FSET partially on FSET A sTurn FPSET on

. (Detects FDFLG error
. immediately and traps
. , to user error routine)

FJEV ;Reason for FSET partially on
' : « ; i
FDIV sError (divide check) occurs here A: WRD . ERR sUser supplied table
FUFN ;User defined function WRD FDFLG
WRD -1

In this example, because FPSET was only partially on when the error actually occurred, the
error trap will indicate that the erring command was FSET. It will, however, indicate that the
divide check flag was on (TRP = 000001 since FDFLG 1s first in table A) and that the error oc-

curred in recursion level 2 since FPSET was turned on in the user function.

D-T100~-%-%L
TVANVW INIOd ONIIVOTd

Examples

3. Another usage of FPSET "Partially On"

User Coded Extended Function

User Main Code
»
JU S$SFI1
FSET -1 sTurn FPSET partially on
FJEV
FUFN ;User defined'functiqn

In this example, FPSET indicates an error on
recursion level 1, and that the command

causing tue error was FUFN (i.e. AY will have

address of FUFN command) . This 1s as it should

be since the arguments given to the user function at
the FUFN caused the function to set an error con-
dition. . |

Note: ‘If the FSET -1 had not been issued in the Main
Code, FPSET would have indicated the AY= -1 condition.
It would, however, indicate the correct flag and the

correct level (i.e. level 1).

FPUFN: .
Jé $SFI
f;ET A ;Turn FPSET on
. (no errors yet)
e
: Inﬁut argument cause

ZM P1,FUFLG

Ju $SFI
. by FPSET
A; WRD ERR
WRD FYXFLG
WRD FDFLG

WRD FUFLG

user coded function
to set error flag

$ error is detected here

J-100-%%-%L
TVANVH INIOd ONILVOTd

8-3

F-1
FLOATING POINT MANUAL
74-44-001-C

APPENDIX F

Trace Routine

The floating point trace is a debugging aid which prints

the value of pertinent variables in $SFI and the user's program

before the execution of each floating point pseudo command. The

variables printed are:

A,

current level of $SFI '

address of the instruction to be executed
code for the instruction to be executed
FINDX (floating point index)

FDFLG (divide check flag)

FXFLG (exponent overflow/underflow flag)
FAC (floating peint pseudo accumulator)
effective address of argument, if any

value of argument, if any

The user specifies which of the variables are to be printed

and the maximum level for which he wants the information printed.

This is done through the floating point pseudo commands FTRN

and FTRF.

To turn the trace on and specify which of the>nine variables

are to be printed, the pseudo command is:

FTRN X .

where bits 0-8 of the integer X correspond to the variables A through

I above.

For each bit that is on (=1) the corresponding variable

F-2
FLOATING POINT MANUAL
74-44-001-C

will be printed before the execution of each floating point command.
The FTRN command sets maximum recursion level to be traced to 7,

turns the trace on and prints a heading (A-I), teiling which variables
are to be printed. The '"trace on" causes the specified variables to

be printed on one line before each instruction is executed.

The printed value of vafiables H (argument effective address)
and I (argument) need further explanation. If the command to be
executed has no argument, columns H and I will be blank. If the
argument is floating point, I is printed as a floating pgint decij
mal number, otherwise it is octal. ’If the command is FIRN, FTRF or
a JUMP command, then H is the ad&ress+l of the command and I is the
contents of H. In the case of the commands FLDX Y, or FSTX Y, H is
the address Y and I is the contents of Y. For user coded extended

functions, columns H and I will be blank.

To turn the trace off beyond a certain level, the pseudo command

is:

FTRF X
where the integer value X specifies the maximum recursion 1eve1_(1—7)
for which the specified variables are to be printed. If X is less
than or equal to 0, the trace is disabled and no variables will be

printed from then on until another FTIRN X command is executed.

FLOATING POINT MANUAL
74-44-001-C

Notes:

1) VWhen the trace has been turned on, certain locations in
$SFI are‘changed. $SFI is restore& to its original state
only after the trace is completely disabled by an FTRF 0 —
command. Therefore, to restart the user program or use

$SFI without reloading when the trace has been on, the user

should make sure that:

a) FGET+l is initialized to FARCD
~b) FSPLT is initialized to 11 0000 06
c) FSPLT+l is initialized to FIMAI

d) FPSTA+l is initialized to FARGD

2) The trace program cannot run at the same time as FPSET .

FLOATING POINT MANUAL

P-4 74~44-001-C
x2g1 3EXAMPLE 1
o2 3THIS EXAMPLE USES TWO FTRN FOMMANDS o
a3 $THE 1ST FTRN SELECTS VARIABLES AsRsf sDNsF yGynst
ooy sTO BE PRINTECo THIS IS IN EFFECT UNTIL TwE
205 32ND FTRN IS EXERUTEDe THE SELECTED VARTAELES
€06 3ARE THEN CHANCED TO AsB sf sE oF 56 sHo THE
eg7 SFTRF @ COMPLETELY NISABLES THE TRACE
eae 3THE SSFIC LISTINE WITH THE ACGDITION oF
a9 3THE FPTRN AND FPTRF ADCED IS NOT SHOWH
¢10 ceadc @ ¢¢ 019¢ €3 JU SEF]
peaes ¢ ¢cae0ee -
¢11 ¢@@e2 ¢ ¢¢ Pe0E 11 FTRN 757 CSPRINT AsBsCsDsE3GsHs 1
foEB2 ¢ 098757
€12 00ee4 ¢ 00 'OCEC 27 FLOX W
Coros 1 poenI2
213 00080¢ ¢ 00 '2¢o0 @1 FLDA X 3Y=X»Y
reeg7 1 ¢g06023
g14 ee@ic © €0 'PEOC €5 FMPY ¥
£oe11 1 PEEE3S |
¢15 ¢0€12 ¢ ¢¢ '6epe @2 FSTA Y
eeE13 1 ¢oeels ,
016 FEB14 @ €O '2CE0 26 FJIIX o-6 ;DONE LOOP 3 TIMES?
0ePIc 1 20COR6
€17 0erie ¢ o oeee 11 FTRN 367 3PRINT A5BsC sE5F 5G oM
e0C17 2 280367
¢18 ee@2¢ 0 £¢ 2F3C 61 FLDA X
¢ee21 1 £@E0O33
019 0@d@22 ¢ 00 ‘2000 €6 FOIV Y
geE23 1 ¢0e8325
P20 02U ¢ 69 'B0R0 02 FSTA 2
¢og2c 1 002037
021 €@E26 0 €0 GEO0 12 FTRF @ 5 TURN TRACE OFF
€0027 0 CoveeD
022 €0@3¢ 0 ¢9 220 0O FEXT
g23 g0OE31 2 @2 '¢1080 00 FoM HLT .
g24 20€32 8 177775 We WRD -3 5LCOP COUNT
@25 00832 ¢ 850000 X WRD SPBEEs2Z3 558
eeB3y ¢ P002¢3 |
826 BOB3IE ¢ £4OCH Y WRD UEEEEs202 5200
2er36 ¢ eo0202 _ |
g27 ¢e@37 ¢ tooeop Z: WRD @8 3300
@ogur € 0O00eD
n28 SEDITED SFCO TAPE FOLLOWSe AN
229 SNLIST WAS ADDED AT THE BEGINNING
230 5T0 CUT DOWN ASSEMSLY LISTING TIME
631 NLIST »

241 1 " geeoul END

.

T ek et et b B pd pd et PP (md et e Pt

i

[S

F-5 ' Floating Point Manual
74-44-001-C

PRINTOUT FROM EXAMPLE 1

B c D G | H 1

F

0004 00027 000000 O +8.32p525E-25 @9832 177775

00006 00001 177775 © +8.320525E-25 Q0333 +5.0C0000E+00
PO010 0PBBS 177775 @ +5.0000C0E+00 00035 - +2.030000E+00
00012 00002 177775 0 +1.000000E+01 08035 +2.000000E+00
00014 B0026 177775 © +1.000D00E+Q] GO801S - 000026

PO0DE6 0BGE1 177776 © +1.000000E+61 00033 +5.000000E+G0
00010 @B005 177776 0 +5.000000E+00 00035 +1.000309CE+01
PE012 00002 177776 0 +5.000000E+01 00035 +1.000000E+01
' Q0014 P0026 177776 0 +5.000000E+01 00015 000006

00006 08001 177777 © +5.00000GE+01 00033 +5.000000E+CO
00010 06065 177777 @ +5.000000E+00 00035 +5.000000E+G1
60012 00002 177777 © +2.S5000Q0E+02 00035 +5.000000E+01
00014 98926 177777 © +2.50C008E+02 00015 000006

00016 @01l 000008 0 +2.500000E+02 00017 000367

B C E F G H

0820 00801
pop22 00606
0PG4 HR032
pope gog12

+2.500000E+32 (0033
+5.000200E+00 90635
+2.000000E-02 BEOB37
+2.000009E-02 @e2o27

(SIS RO RS Y
BRSSO IS RN

#0201

£82
703
g o4
85
raeé
ga7

goage

- peret

gaa
2a9
018
011
012
613
01y
£15
016
017
£18
£19
620
g21
622
223
¢24
625
626
027
028
829
¢30
31
232
£33
g3

235
236

237
238
249

geae?
goges
geepguy
goeec
poeces
goeey
goeie
geets

geeie
eex13
geaEty
geg1c
gogie
gew7
peeaze
gge21

POE22
ggg23
geg24y
poe2t
2oE26
gowa7
geaze
FoaE3

pea@3?
geE33
gee3d
goE3t
eeg3e

?ea37
ggaue
goadys
gogy2
geay’
egeyd
gee4qc
poFUE
ggauaz
gogcse
g088c%1

-2@as52

poRS3
ggessy

T ge@se

e ommM eSS et Hon oAt R e

SEmemrtoom Pa Nt s

ge o1oe €3

gacorg
¢eg oego
ee@777
ge eeee
eeeeez
¢o 2080
pecoz4
#7e 2ga1
ggeees
6o ‘eoee
ese@27
fg ‘eg@eoe
egge27
fg 'gzoe
poep10
go oeoa
poooeo
g0 eepo
02 n10e
177776
pegO2
200032
ppooes
reeeea
g7e4en
gepg211
pezegp
geeg2eé
gseoe0
eee2ey

11

12

)

g1

£2

37

26

12

po
ee

T PpeR37

2@ 91090
geoeep
11 'geee
gpooote
pe o100
peeeee
g8 ‘eeec
ggeo1
po ogae
coeoge
g2 829"
2oe0o26
29 0¢o0
g9 0100
gaeore

B3

g6 -

23

g1

g6

g2

re
23

" Eegeteé

SEXAMPLE 2 -

FLOATING POINT MANUAL

74-44-001-C

THIS EXAMPLE PRINTS ALL

CVARIARLFS

3FOR RECURSION LEVELS 1 AND 20 THE USER EXTENPFED
sFUNCTION IS AT RECURSION LEVEL 2 AND ITS ENTFY

sPOINT HAS BEEN ACDED TO SSFIC AT COOE
5STEP IS NOT SHOWNe
ENTRY FPUFN

FUFh=37

5FOR SA
FPUFN:

ARG:

sEDITED

JU $EF I
FTRN 777
FTRF 2
FLDX X
FLDAD X#1
FSTA Y
FUFN Y
FJIX
F TRF ﬁ
FEXT
FOM
WRD
WRD

WRD
WRE

HLT
-2
c50-1
ceg-1

Ps9

WRD

WRE

KE OF
JUu

FARGD
M
JU SSFI
FLDA Z
FDIV @
FSTAD X#2

FEXT

JU FCET
$SFCC TAPE

NLIST

END

764295211
620085226

ceee@s2¢e4

AXsARC+1

270 THIC

SPRINT As2sC sDsEsF 3Gt sl

s MAX TRACE LEVFL

P4

sFETCH ARG DEFERRED

$ USER .EXTENDED FUNCTION

;s DONE

3 YES

sLCOP
SFETC
3 STOK
s FUFN
35280
35068

31000

?
TRACE OQFF
COUNT

H ADRs CEFERRED

E ADRs DEFERRED
ARG e

)

3 USER FUNCTION CCOE
5USER EXTENDELD FUNCTION. - INCLUDED IN
3 SAME ASSEMBLY A4S CODE WHICH USES IT

sENTE

3500

SPACE IN THIS EXAMPLE»

R LEVEL 2

27y

FOLLGWS WITH NLIST

(AEOVE)

hid

e DO DO D) DD b b ke e (O O (D QO b e = e

B

00804
20006
60010
20012
pOoLA
20045
200647
20851

BBO53

0oo16
20014
poole
20014

oG4S

POBHT
Pe051
go0sS3
poC16
pooeo

C

pogla

.pgeaT

25101
PBoBe
28837
0001
pacoe6
vciee
poBEY
00826
28121

zooo2 .

pee37

0o001

aBeo6
eo1T02
915351016)
ocoaé
poeliz

D

200000
00000
177776
177776
177776
177776
177776
177776
177776
177776

177777
177777

177777
177777
177777
177777
177777
177777
0e0000

PRINTOUT FROM EXAMPLE 2

)

(SIS BV IR IR S IO IO IO B S S BRI S IR S BRI SIS I]

)

SO

G

+6.902202E-21
+6.902202E-21
+6.902202E-21
+5.000000E+0]

+S5:000000E+C1

+5.00000CE+21
+5.000000E+82

 +1.000000E+01

+1.000000E+01
+1.0000C80E+01
+1.000308E+01
+1.000000E+81
+1.0C80000E+01
+1.000000E+01
+5.00@00CE+22
+5.002820E+031
+5.000035E+31

+5.00000%E+81 -
+5.000000E+31

20005
Po024
00033

20027

00031
00027
20533

09217
QB35

o217

20031
BoY27

. BBB3S

00017
g2l

Floating Point Manual

74-44-001-C

I
perBe2
17777¢€

+5.000003FE+01
+0. 000090 E+BD

+5.000800E+02
+5.000B009E+01
+5.00000BE+01

o610
+1.000000E+21
+5.200008E+01

+5.000000E+02
+1.000060G0E+01
+1.000080E+01

p2BB10
alaYalolals]

F-8 ' Floating Point Manual

74-44-001-C

%001 SEXAMPLE 3

202 3THIS IS THE SAME AS EXAMPLE 2

283 SEXCEPT THE MAXIMUM RECURSION

eoy sLEVEL PRINTED IS LEVEL 1 DUE

¢gs 35TO THE FTRF 1 COMMANDo

gaeé ENTRY FPUFN

¢@7 ooage ¢ 20 €100 £3 JU $SF1

; ¢p08083 ¢ COFOCO , ‘

08 ¢povez 9 00 P¢0@ 11 FTRN 777 SPRINT AsBsC sDsEsF sGaH I
08Ce2 @ eae777 : v '

709 e¢ofey ¢ C0 dPOO 12 FTRF 14 $sMAX TRACE LFVFL="
ogTec ¢ co00€1 : '

$10 0QVQE6E € 0@ 0CBE 27 FLOX X
peFe7 1 cgpe24 .

g11 ¢oo1e¢ 0 ¢¢ 001 @1 FLDAD X+1 - 3FETCH ARG DEFERRED
geF11 1 ggr@2s :

812 o0ee1z 2 eo 2¢QQ €2 FSTA Y
geF12 1 2go@z7

613 eee14 @ ¢g @¢0@ 37 FUFEN Y JUSER EXTENCED FUNCTION
geE1c 1 Q@907

014 ¢fod1é ¢ 0P 'degE 26 FJIX o-6 s DONE 2
gex17 1 eooe1o »

215 ¢of2¢ © 20 0009 12 FTRF 8 35 YESs TRATCE 0FF
gge21 o 29o00CD

g16 ¢0€622 ¢ 0@ ‘6eoc 0O FEXT

817 P@rF22 @ 02 06100 ¢0 FoM HLT

918 Q@24 ¢ 177776 Xz WRD -2 sLOOP COUNT

219 P@EF2c 1 gooE32 WRD c5@-1 JFETCH ADRs DEFERRED

620 0PO®2€ 1 700032 WRD Ctg-1¢ 5 STORE ADRs DEFERKED

221 e@v27 ¢ P@o6P00 Y: WRD @2 5FUFN ARG o
gev3e 0 foC000

g22 00031 @ 076400 Z: WRD 7€422s211 ;5008080
g@avg32 @ 200211

023 p9OR32 ¢ 062000 cEg@g: WRD 62220:226 35000
geE3Y ¢ 0208206

P24 ¢o@3F ¢ @secen HRD 520022,224 31000
08F36 @ CoB204

225 ¢ " gP00I7 FUFN=27 5 USER FUNCTION CODE

226 3USER EXTENDEDR FUNCTION - INFLUDED TN

g27 3SAME ASSEMBLY AS CODE WHICH USES IT (AZQVF)

g28 sFOR SAKE OF SPACE IN THIS EXAMPLE,

729 00@37 ¢ €0 '010@ 23 FPUFN: JU FARGD
ZoG4e ¢ 0Q0CRQ _

g3¢ 20241 9 11 '2¢P0 06 _ kM AXsARG+1
eaeuy2 1 ¢coogca

231 ¢QOP43 @ €0 0100 03 JU $SF1 JENTER LEVEL 2
2004y ¢ CPGOCO

032 e@Cuc g 20 oeoe °1 FLOA Z ;S¢2oQ/Y
POFYe 1 PAROB3 :

033 00847 ¢ €@ €902 P6 ARG: FOIv ¢
0e6Se @ ¢go0EQ

¢34 0@E%1 @ ¢0 Or@A1 02 FSTAD X+2
geeEc2 1 0006026

P35 08652 ¢ 00 000Q @0 FEXT

£36 @BESY ¢ 0@ 0189 €3 JUu FCET
PeESE ¢ 0oOP0O _ _

237 SEDITED SFCC TAPE FOLLOWS WITH NLIST

P38 NLIST

P49 1

' £BB0Es END

ol

B S S T)

00004
00006

peoLeG.

20012
20014
00016
09013
goe12
o014
o016
90220

c

peoiz

P27

29101
101016
poB37
ooo26
00191

peaoe

PpoOB37
o226
po@12

D

020000

e300
177776
177776
177776

177776

177777
177777
177777
177777
220000

3

(SRS RSO SEOR SRR RN

PRINTOUT FROM EXAMPLE 3

xy

(OIS IR IS IS IS RO RS B B S

G

+€6.902202E~-21
+6.9C2202E-21

+6.902282E-21

+5.000000E+01
+5.002082E+01
+1.00000CE+D1
+1.00C006E+D31
+1.000C00E+01
+1.008000E+@1

+5.020020E+D1 -
+5.000000E+01

H

@gores
zeo24
26233
poc27

peeL7
PBO35
booa7

02617
pgoa2l

Floating Point Manual

74-44-001-C

I‘.

PEoEol
177776

+5.000083E+01

+0.0200COE+C0

000610
+1.220080E+81
+5.0C0000E+061

opEal1e
202830

Routine

$SFI
$SFIC
$SFEC
@SCF
@SFC
"@XC
FPSIN
FPATN
FPLNE -
FPEXP
FPSQT
FPSET

FPTRC

Basic package
no conversion

Basic package

with conversion
extended Functions

Total system*

13608

110

110

406

. 306

213
173
146

164

FLOATING POINT MANUAL

G-1

APPENDIX G

System Storage Requirements

Model 30

(72)

(72)

(262)
(198)
(139)
(123)
(102)
(116)

(129)

(152)

1020 (528

(7521

Model 40
7608 (49610)
116 {72
110 (72)
1367 (247)
263 (179)

175 (125)

145 (101)

150 (104)

230 (152)

J LR A

774 (508)

Typical Configuration Storége Requirements

(no debug features)

1470 (824) 1070 (568)
2617 (1423) 2137 (1119)
1055 (557) 722 (466)

3674 (1980) . 3061 (1585)

74-44-001-C

DescriEtion

Basic package
Command taﬂle
Ext. command table
char/float pt.
float pt./char

conversion common

error trap

trace routine

glﬁ GRI Computer Corporation

320 NEEDHAM STREET, NEWTON, MASSACHUSETTS 02144

o Toam e 1 1

TIL [417) 9450800

	0001
	0002
	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-01
	6-02
	6-03
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	A-01
	A-02
	B-01
	C-01
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	G-01
	xBack

